In TensorFlow, a constant is a special Tensor that cannot be modified while the graph is running. Like in a linear model $\tilde{y_i}=\boldsymbol{w}x_i+b$, constant $b$ can be represented as a Constant Tensor. Since the constant is a Tensor, it also has all the data characteristics of Tensor, including:
在TensorFlow中,常量是一种特殊的Tensor,它在计算图运行的时候,不能被修改。比如在线性模型里$\tilde{y_i}=\boldsymbol{w}x_i+b$, 常数$b$就可以用一个常量来表示。既然常量是一种Tensor,那么它也就具有Tensor的所有数据特性,它包括:
TensorFlow provides a handy function to create a Constant. In TF.NET, you can use the same function name tf.constant
to create it. TF.NET takes the same name as python binding to the API. Naming, although this will make developers who are used to C# naming habits feel uncomfortable, but after careful consideration, I decided to give up the C# convention naming method.
TensorFlow提供了一个很方便的函数用来创建一个Constant, 在TF.NET,可以使用同样的函数名tf.constant
来创建,TF.NET采取尽可能使用和python binding一样的命名方式来对API命名,虽然这样会让习惯C#命名习惯的开发者感到不舒服,但我经过深思熟虑之后还是决定放弃C#的约定命名方式。
Initialize a scalar constant:
var c1 = tf.constant(3); // int
var c2 = tf.constant(1.0f); // float
var c3 = tf.constant(2.0); // double
var c4 = tf.constant("Big Tree"); // string
Initialize a constant through ndarray:
// dtype=int, shape=(2, 3)
var nd = np.array(new int[][]
{
new int[]{3, 1, 1},
new int[]{2, 3, 1}
});
var tensor = tf.constant(nd);
Now let's explore how constant works.
现在让我探究一下tf.constant
是怎么工作的。