|
- using Microsoft.VisualStudio.TestTools.UnitTesting;
- using Tensorflow.NumPy;
- using Tensorflow;
- using Tensorflow.Keras.Losses;
- using static Tensorflow.Binding;
- using static Tensorflow.KerasApi;
-
- namespace TensorFlowNET.Keras.UnitTest
- {
- [TestClass]
- public class MeanAbsoluteError
- {
- //https://keras.io/api/losses/regression_losses/
-
- NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 0.0f, 0.0f } };
- NDArray y_pred_float = new float[,] { { 1.0f, 1.0f }, { 1.0f, 0.0f } };
-
- [TestMethod]
-
- public void _Default()
- {
-
- //>>> # Using 'auto'/'sum_over_batch_size' reduction type.
- //>>> mae = tf.keras.losses.MeanAbsoluteError()
- //>>> mae(y_true, y_pred).numpy()
- //0.5
- var loss = keras.losses.MeanAbsoluteError();
- var call = loss.Call(y_true_float, y_pred_float);
- Assert.AreEqual((NDArray)(0.5f), call.numpy());
- }
-
- [TestMethod]
-
- public void _Sample_Weight()
- {
- //>>> # Calling with 'sample_weight'.
- //>>> mae(y_true, y_pred, sample_weight =[0.7, 0.3]).numpy()
- //0.25
- var loss = keras.losses.MeanAbsoluteError();
- var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.7f, 0.3f });
- Assert.AreEqual((NDArray)(0.25f), call.numpy());
- }
-
- [TestMethod]
-
- public void _SUM()
- {
- //>>> # Using 'sum' reduction type.
- //>>> mae = tf.keras.losses.MeanAbsoluteError(
- //... reduction = tf.keras.losses.Reduction.SUM)
- //>>> mae(y_true, y_pred).numpy()
- //1.0
- var loss = keras.losses.MeanAbsoluteError( reduction: ReductionV2.SUM);
- var call = loss.Call(y_true_float, y_pred_float);
- Assert.AreEqual((NDArray)(1.0f), call.numpy());
- }
-
- [TestMethod]
-
- public void _None()
- {
- //>>> # Using 'none' reduction type.
- //>>> mae = tf.keras.losses.MeanAbsoluteError(
- //... reduction = tf.keras.losses.Reduction.NONE)
- //>>> mae(y_true, y_pred).numpy()
- //array([0.5, 0.5], dtype = float32)
- var loss = keras.losses.MeanAbsoluteError(reduction: ReductionV2.NONE);
- var call = loss.Call(y_true_float, y_pred_float);
- Assert.AreEqual((NDArray)new float[] { 0.5f, 0.5f }, call.numpy());
- }
-
- }
- }
|