|
- using NumSharp;
- using System;
- using System.Collections.Generic;
- using System.Text;
- using Tensorflow;
-
- namespace TensorFlowNET.Examples.Utility
- {
- public class DataSet
- {
- private int _num_examples;
- public int num_examples => _num_examples;
- private int _epochs_completed;
- public int epochs_completed => _epochs_completed;
- private int _index_in_epoch;
- public int index_in_epoch => _index_in_epoch;
- private NDArray _images;
- public NDArray images => _images;
- private NDArray _labels;
- public NDArray labels => _labels;
-
- public DataSet(NDArray images, NDArray labels, TF_DataType dtype, bool reshape)
- {
- _num_examples = images.shape[0];
- images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]);
- images.astype(dtype.as_numpy_datatype());
- images = np.multiply(images, 1.0f / 255.0f);
-
- labels.astype(dtype.as_numpy_datatype());
-
- _images = images;
- _labels = labels;
- _epochs_completed = 0;
- _index_in_epoch = 0;
- }
-
- public (NDArray, NDArray) next_batch(int batch_size, bool fake_data = false, bool shuffle = true)
- {
- var start = _index_in_epoch;
- // Shuffle for the first epoch
- if(_epochs_completed == 0 && start == 0 && shuffle)
- {
- var perm0 = np.arange(_num_examples);
- np.random.shuffle(perm0);
- _images = images[perm0];
- _labels = labels[perm0];
- }
-
- // Go to the next epoch
- if (start + batch_size > _num_examples)
- {
- // Finished epoch
- _epochs_completed += 1;
-
- // Get the rest examples in this epoch
- var rest_num_examples = _num_examples - start;
- //var images_rest_part = _images[np.arange(start, _num_examples)];
- //var labels_rest_part = _labels[np.arange(start, _num_examples)];
- // Shuffle the data
- if (shuffle)
- {
- var perm = np.arange(_num_examples);
- np.random.shuffle(perm);
- _images = images[perm];
- _labels = labels[perm];
- }
-
- start = 0;
- _index_in_epoch = batch_size - rest_num_examples;
- var end = _index_in_epoch;
- var images_new_part = _images[np.arange(start, end)];
- var labels_new_part = _labels[np.arange(start, end)];
-
- /*return (np.concatenate(new float[][] { images_rest_part.Data<float>(), images_new_part.Data<float>() }, axis: 0),
- np.concatenate(new float[][] { labels_rest_part.Data<float>(), labels_new_part.Data<float>() }, axis: 0));*/
- return (images_new_part, labels_new_part);
- }
- else
- {
- _index_in_epoch += batch_size;
- var end = _index_in_epoch;
- return (_images[np.arange(start, end)], _labels[np.arange(start, end)]);
- }
- }
- }
- }
|