|
- # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for miscellaneous functionality in tensorflow.ops.nn."""
-
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
-
- import math
-
- from absl.testing import parameterized
- import numpy as np
- from six.moves import xrange # pylint: disable=redefined-builtin
-
- from tensorflow.python.framework import constant_op
- from tensorflow.python.framework import dtypes
- from tensorflow.python.framework import ops
- from tensorflow.python.framework import test_util
- from tensorflow.python.ops import array_ops
- from tensorflow.python.ops import gradient_checker
- from tensorflow.python.ops import math_ops
- from tensorflow.python.ops import nn_impl
- from tensorflow.python.ops import nn_ops
- from tensorflow.python.ops import partitioned_variables
- from tensorflow.python.ops import variable_scope
- from tensorflow.python.ops import variables
- import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
- from tensorflow.python.ops.nn_impl import _compute_sampled_logits
- from tensorflow.python.platform import test as test_lib
-
-
- class ZeroFractionTest(test_lib.TestCase):
-
- def _ZeroFraction(self, x):
- assert x.shape
- total_elements = np.prod(x.shape)
- nonzeros = np.count_nonzero(x.flatten())
- return 1.0 - nonzeros / total_elements
-
- @test_util.run_deprecated_v1
- def testZeroFraction(self):
- x_shape = [5, 17]
- x_np = np.random.randint(0, 2, size=x_shape).astype(np.float32)
- y_np = self._ZeroFraction(x_np)
-
- x_tf = constant_op.constant(x_np)
- x_tf.set_shape(x_shape)
- y_tf = nn_impl.zero_fraction(x_tf)
- y_tf_np = self.evaluate(y_tf)
-
- eps = 1e-8
- self.assertAllClose(y_tf_np, y_np, eps)
-
- @test_util.run_deprecated_v1
- def testZeroFractionEmpty(self):
- x = np.zeros(0)
- y = self.evaluate(nn_impl.zero_fraction(x))
- self.assertTrue(np.isnan(y))
-
- @test_util.run_deprecated_v1
- def testZeroFraction2_27Zeros(self):
- sparsity = nn_impl.zero_fraction(
- array_ops.zeros([int(2**27 * 1.01)], dtype=dtypes.int8))
- self.assertAllClose(1.0, self.evaluate(sparsity))
-
- @test_util.run_deprecated_v1
- def testZeroFraction2_27Ones(self):
- sparsity = nn_impl.zero_fraction(
- array_ops.ones([int(2**27 * 1.01)], dtype=dtypes.int8))
- self.assertAllClose(0.0, self.evaluate(sparsity))
-
- @test_util.run_deprecated_v1
- def testUnknownSize(self):
- value = array_ops.placeholder(dtype=dtypes.float32)
- sparsity = nn_impl.zero_fraction(value)
- with self.cached_session() as sess:
- self.assertAllClose(
- 0.25,
- sess.run(sparsity, {value: [[0., 1.], [0.3, 2.]]}))
-
-
- class SoftmaxTest(test_lib.TestCase, parameterized.TestCase):
-
- def _softmax(self, x):
- assert len(x.shape) == 2
- m = x.max(1)[:, np.newaxis]
- u = np.exp(x - m)
- z = u.sum(1)[:, np.newaxis]
- return u / z
-
- @test_util.run_in_graph_and_eager_modes
- def testSoftmax(self):
- x_shape = [5, 10]
- x_np = np.random.randn(*x_shape).astype(np.float32)
- y_np = self._softmax(x_np)
- x_tf = constant_op.constant(x_np)
- y_tf = nn_ops.softmax_v2(x_tf)
- y_tf_last_dim = nn_ops.softmax_v2(x_tf, 1)
- y_tf_np = self.evaluate(y_tf)
- y_tf_last_dim_np = self.evaluate(y_tf_last_dim)
- eps = 1e-3
- self.assertAllClose(y_tf_np, y_np, eps)
- self.assertAllClose(y_tf_last_dim_np, y_np, eps)
-
- def testSoftmaxAxes(self):
- arr = np.linspace(0., 1, 12).reshape(3, 4)
- x_neg_axis = nn_ops.softmax_v2(arr, axis=-2)
- y_pos_axis = nn_ops.softmax_v2(arr, axis=0)
- z_gt_axis = nn_ops.softmax_v2(arr, axis=0)
- x_neg_axis_tf = self.evaluate(x_neg_axis)
- y_pos_axis_tf = self.evaluate(y_pos_axis)
- z_gt_axis_tf = self.evaluate(z_gt_axis)
- eps = 1e-3
- self.assertAllClose(x_neg_axis_tf, y_pos_axis_tf, eps)
- self.assertAllClose(y_pos_axis_tf, z_gt_axis_tf, eps)
-
- @parameterized.parameters(((5, 10),), ((2, 3, 4),))
- @test_util.run_deprecated_v1
- def testGradient(self, x_shape):
- x_np = np.random.randn(*x_shape).astype(np.float64)
- with self.cached_session():
- x_tf = constant_op.constant(x_np)
- y_tf = nn_ops.softmax_v2(x_tf)
- err = gradient_checker.compute_gradient_error(x_tf, x_shape, y_tf,
- x_shape)
- eps = 2e-8
- self.assertLess(err, eps)
-
-
- class LogPoissonLossTest(test_lib.TestCase):
-
- def _log_poisson_loss(self, x, z, compute_full_loss=False):
- lpl = np.exp(x) - z * x
- if compute_full_loss:
- stirling_approx = z * np.log(z) - z + 0.5 * np.log(2. * np.pi * z)
- lpl += np.ma.masked_array(stirling_approx, mask=(z <= 1)).filled(0.)
- return lpl
-
- @test_util.run_in_graph_and_eager_modes
- def testLogPoissonLoss(self):
- x_shape = [5, 10]
- x_np = np.random.randn(*x_shape).astype(np.float32)
- z_np = np.random.randint(0, 5, size=x_shape).astype(np.float32)
- y_np = self._log_poisson_loss(x_np, z_np, compute_full_loss=False)
- y_np_stirling = self._log_poisson_loss(x_np, z_np, compute_full_loss=True)
- y_tf = nn_impl.log_poisson_loss(z_np, x_np, compute_full_loss=False)
- y_tf_stirling = nn_impl.log_poisson_loss(z_np, x_np, compute_full_loss=True)
- y_tf_np = self.evaluate(y_tf)
- y_tf_np_stirling = self.evaluate(y_tf_stirling)
- eps = 1e-3
- self.assertAllClose(y_tf_np, y_np, eps)
- self.assertAllClose(y_tf_np_stirling, y_np_stirling, eps)
-
- @test_util.run_deprecated_v1
- def testGradient(self):
- x_shape = [5, 10]
- x_np = np.random.randn(*x_shape).astype(np.float64)
- z_np = np.random.randint(0, 5, size=x_shape).astype(np.float64)
- with self.cached_session():
- x_tf = constant_op.constant(x_np)
- y_tf = nn_impl.log_poisson_loss(z_np, x_tf, compute_full_loss=False)
- y_tf_stirling = nn_impl.log_poisson_loss(
- z_np, x_tf, compute_full_loss=True)
- err = gradient_checker.compute_gradient_error(x_tf, x_shape, y_tf,
- x_shape)
- err_stirling = gradient_checker.compute_gradient_error(
- x_tf, x_shape, y_tf_stirling, x_shape)
- eps = 1e-6
- self.assertLess(err, eps)
- self.assertLess(err_stirling, eps)
-
-
- class LogSoftmaxTest(test_lib.TestCase, parameterized.TestCase):
-
- def _log_softmax(self, x):
- assert len(x.shape) == 2
- m = x.max(1)[:, np.newaxis]
- u = x - m
- return u - np.log(np.sum(np.exp(u), 1, keepdims=True))
-
- @test_util.run_in_graph_and_eager_modes
- def testLogSoftmax(self):
- x_shape = [5, 10]
- x_np = np.random.randn(*x_shape).astype(np.float32)
- y_np = self._log_softmax(x_np)
- x_tf = constant_op.constant(x_np)
- y_tf = nn_ops.log_softmax_v2(x_tf)
- y_tf_np = self.evaluate(y_tf)
- eps = 1e-3
- self.assertAllClose(y_tf_np, y_np, eps)
-
- def testLogSoftmaxAxes(self):
- arr = np.linspace(0., 1, 12).reshape(3, 4)
- x_neg_axis = nn_ops.log_softmax_v2(arr, axis=-2)
- y_pos_axis = nn_ops.log_softmax_v2(arr, axis=0)
- z_gt_axis = nn_ops.log_softmax_v2(arr, axis=0)
- x_neg_axis_tf = self.evaluate(x_neg_axis)
- y_pos_axis_tf = self.evaluate(y_pos_axis)
- z_gt_axis_tf = self.evaluate(z_gt_axis)
- eps = 1e-3
- self.assertAllClose(x_neg_axis_tf, y_pos_axis_tf, eps)
- self.assertAllClose(y_pos_axis_tf, z_gt_axis_tf, eps)
-
- @parameterized.parameters(((5, 10),), ((2, 3, 4),))
- @test_util.run_deprecated_v1
- def testGradient(self, x_shape):
- x_np = np.random.randn(*x_shape).astype(np.float64)
- with self.cached_session():
- x_tf = constant_op.constant(x_np)
- y_tf = nn_ops.log_softmax_v2(x_tf)
- err = gradient_checker.compute_gradient_error(x_tf, x_shape, y_tf,
- x_shape)
- eps = 1e-7
- self.assertLess(err, eps)
-
-
- class L2LossTest(test_lib.TestCase):
-
- @test_util.run_in_graph_and_eager_modes
- def testL2Loss(self):
- for dtype in [dtypes.float32, dtypes.float64]:
- x = constant_op.constant(
- [1.0, 0.0, 3.0, 2.0], shape=[2, 2], name="x", dtype=dtype)
- l2loss = nn_ops.l2_loss(x)
- value = self.evaluate(l2loss)
- self.assertAllClose(7.0, value)
-
- @test_util.run_deprecated_v1
- def testGradient(self):
- x_shape = [20, 7, 3]
- np.random.seed(1) # Make it reproducible.
- x_val = np.random.random_sample(x_shape).astype(np.float64)
- with self.cached_session():
- x = constant_op.constant(x_val, name="x")
- output = nn_ops.l2_loss(x)
- err = gradient_checker.compute_gradient_error(x, x_shape, output, [1])
- print("L2Loss gradient err = %g " % err)
- err_tolerance = 1e-10
- self.assertLess(err, err_tolerance)
-
-
- class L2NormalizeTest(test_lib.TestCase):
-
- def _l2Normalize(self, x, dim):
- if isinstance(dim, list):
- norm = np.linalg.norm(x, axis=tuple(dim))
- for d in dim:
- norm = np.expand_dims(norm, d)
- return x / norm
- else:
- norm = np.apply_along_axis(np.linalg.norm, dim, x)
- return x / np.expand_dims(norm, dim)
-
- @test_util.run_in_graph_and_eager_modes
- def testL2Normalize(self):
- x_shape = [20, 7, 3]
- np.random.seed(1)
- x_np = np.random.random_sample(x_shape).astype(np.float32)
- for dim in range(len(x_shape)):
- y_np = self._l2Normalize(x_np, dim)
- x_tf = constant_op.constant(x_np, name="x")
- y_tf = nn_impl.l2_normalize_v2(x_tf, dim)
- self.assertAllClose(y_np, self.evaluate(y_tf))
-
- @test_util.run_in_graph_and_eager_modes
- def testL2NormalizeDimArray(self):
- x_shape = [20, 7, 3]
- np.random.seed(1)
- x_np = np.random.random_sample(x_shape).astype(np.float32)
- dim = [1, 2]
- y_np = self._l2Normalize(x_np, dim)
- x_tf = constant_op.constant(x_np, name="x")
- y_tf = nn_impl.l2_normalize_v2(x_tf, dim)
- self.assertAllClose(y_np, self.evaluate(y_tf))
-
- @test_util.run_deprecated_v1
- def testL2NormalizeGradient(self):
- x_shape = [20, 7, 3]
- np.random.seed(1)
- x_np = np.random.random_sample(x_shape).astype(np.float64)
- for dim in range(len(x_shape)):
- with self.cached_session():
- x_tf = constant_op.constant(x_np, name="x")
- y_tf = nn_impl.l2_normalize_v2(x_tf, dim)
- err = gradient_checker.compute_gradient_error(x_tf, x_shape, y_tf,
- x_shape)
- print("L2Normalize gradient err = %g " % err)
- self.assertLess(err, 1e-4)
-
-
- class DropoutTest(test_lib.TestCase):
-
- def testDropout(self):
- # Runs dropout with 0-1 tensor 10 times, sum the number of ones and validate
- # that it is producing approximately the right number of ones over a large
- # number of samples, based on the keep probability.
- x_dim = 40
- y_dim = 30
- num_iter = 10
- for keep_prob in [0.1, 0.5, 0.8]:
- t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
- dropout = nn_ops.dropout(t, keep_prob)
- final_count = 0
- self.assertEqual([x_dim, y_dim], dropout.get_shape())
- for _ in xrange(0, num_iter):
- value = self.evaluate(dropout)
- final_count += np.count_nonzero(value)
- # Verifies that there are only two values: 0 and 1/keep_prob.
- sorted_value = np.unique(np.sort(value))
- self.assertEqual(0, sorted_value[0])
- self.assertAllClose(1 / keep_prob, sorted_value[1])
-
- # Check that we are in the 15% error range
- expected_count = x_dim * y_dim * keep_prob * num_iter
- rel_error = math.fabs(final_count - expected_count) / expected_count
- print(rel_error)
- self.assertTrue(rel_error < 0.15)
-
- def testShapedDropout(self):
- # Runs dropout with 0-1 tensor 10 times, sum the number of ones and validate
- # that it is producing approximately the right number of ones over a large
- # number of samples, based on the keep probability. This time with shaped
- # noise.
- x_dim = 40 * 30
- y_dim = 3
- num_iter = 10
- for keep_prob in [0.1, 0.5, 0.8]:
- t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
- dropout = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim, 1])
- self.assertEqual([x_dim, y_dim], dropout.get_shape())
- final_count = 0
- for _ in xrange(0, num_iter):
- value = self.evaluate(dropout)
- final_count += np.count_nonzero(value)
- # Verifies that there are only two values: 0 and 1/keep_prob.
- sorted_value = np.unique(np.sort(value))
- self.assertEqual(0, sorted_value[0])
- self.assertAllClose(1 / keep_prob, sorted_value[1])
-
- # Check that we are in the 15% error range
- expected_count = x_dim * y_dim * keep_prob * num_iter
- rel_error = math.fabs(final_count - expected_count) / expected_count
- print(rel_error)
- self.assertTrue(rel_error < 0.15)
-
- def testShapedDropoutCorrelation(self):
- # Runs a shaped dropout and tests that the correlations are correct.
- x_dim = 40
- y_dim = 30
- num_iter = 10
- for keep_prob in [0.1, 0.5, 0.8]:
- t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
- dropout = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim, 1])
- self.assertEqual([x_dim, y_dim], dropout.get_shape())
- for _ in xrange(0, num_iter):
- value = self.evaluate(dropout)
- # Verifies that each y column as only one type of activation.
- for i in xrange(x_dim):
- sorted_value = np.unique(np.sort(value[i, :]))
- self.assertEqual(sorted_value.size, 1)
-
- @test_util.run_deprecated_v1
- def testDropoutPlaceholderKeepProb(self):
- # Runs dropout with 0-1 tensor 10 times, sum the number of ones and validate
- # that it is producing approximately the right number of ones over a large
- # number of samples, based on the keep probability.
- x_dim = 40
- y_dim = 30
- num_iter = 10
- for keep_prob in [0.1, 0.5, 0.8]:
- with self.cached_session():
- t = constant_op.constant(
- 1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
- keep_prob_placeholder = array_ops.placeholder(dtypes.float32)
- dropout = nn_ops.dropout(t, keep_prob_placeholder)
- final_count = 0
- self.assertEqual([x_dim, y_dim], dropout.get_shape())
- for _ in xrange(0, num_iter):
- value = dropout.eval(feed_dict={keep_prob_placeholder: keep_prob})
- final_count += np.count_nonzero(value)
- # Verifies that there are only two values: 0 and 1/keep_prob.
- sorted_value = np.unique(np.sort(value))
- self.assertEqual(0, sorted_value[0])
- self.assertAllClose(1 / keep_prob, sorted_value[1])
- # Check that we are in the 15% error range
- expected_count = x_dim * y_dim * keep_prob * num_iter
- rel_error = math.fabs(final_count - expected_count) / expected_count
- print(rel_error)
- self.assertTrue(rel_error < 0.15)
-
- @test_util.run_deprecated_v1
- def testShapedDropoutUnknownShape(self):
- x_dim = 40
- y_dim = 30
- keep_prob = 0.5
- x = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
- dropout_x = nn_ops.dropout(
- x, keep_prob, noise_shape=array_ops.placeholder(dtypes.int32))
- self.assertEqual(x.get_shape(), dropout_x.get_shape())
-
- def testPartialShapedDropout(self):
- x_dim = 40 * 30
- y_dim = 3
- num_iter = 10
- for keep_prob in [0.1, 0.5, 0.8]:
- t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
- # Set noise_shape=[None, 1] which means [x_dim, 1].
- dropout = nn_ops.dropout(t, keep_prob, noise_shape=[None, 1])
- self.assertEqual([x_dim, y_dim], dropout.get_shape())
- final_count = 0
- for _ in xrange(0, num_iter):
- value = self.evaluate(dropout)
- final_count += np.count_nonzero(value)
- # Verifies that there are only two values: 0 and 1/keep_prob.
- sorted_value = np.unique(np.sort(value))
- self.assertEqual(0, sorted_value[0])
- self.assertAllClose(1 / keep_prob, sorted_value[1])
-
- # Check that we are in the 15% error range
- expected_count = x_dim * y_dim * keep_prob * num_iter
- rel_error = math.fabs(final_count - expected_count) / expected_count
- print(rel_error)
- self.assertTrue(rel_error < 0.15)
-
- @test_util.run_deprecated_v1
- def testInvalidKeepProb(self):
- x_dim = 40
- y_dim = 30
- t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
- with self.assertRaises(ValueError):
- nn_ops.dropout(t, -1.0)
- with self.assertRaises(ValueError):
- nn_ops.dropout(t, 1.1)
- with self.assertRaises(ValueError):
- nn_ops.dropout(t, [0.0, 1.0])
- with self.assertRaises(ValueError):
- nn_ops.dropout(t, array_ops.placeholder(dtypes.float64))
- with self.assertRaises(ValueError):
- nn_ops.dropout(t, array_ops.placeholder(dtypes.float32, shape=[2]))
-
- @test_util.run_deprecated_v1
- def testInvalidRate(self):
- x_dim = 40
- y_dim = 30
- t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
- with self.assertRaises(ValueError):
- nn_ops.dropout_v2(t, -1.0)
- with self.assertRaises(ValueError):
- nn_ops.dropout_v2(t, 1.1)
- with self.assertRaises(ValueError):
- nn_ops.dropout_v2(t, [0.0, 1.0])
-
- @test_util.run_deprecated_v1
- def testShapedDropoutShapeError(self):
- # Runs shaped dropout and verifies an error is thrown on misshapen noise.
- x_dim = 40
- y_dim = 30
- keep_prob = 0.5
- t = constant_op.constant(1.0, shape=[x_dim, y_dim], dtype=dtypes.float32)
- with self.assertRaises(ValueError):
- _ = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim, y_dim + 10])
- with self.assertRaises(ValueError):
- _ = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim, y_dim, 5])
- with self.assertRaises(ValueError):
- _ = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim + 3])
- with self.assertRaises(ValueError):
- _ = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim])
- # test that broadcasting proceeds
- _ = nn_ops.dropout(t, keep_prob, noise_shape=[y_dim])
- _ = nn_ops.dropout(t, keep_prob, noise_shape=[1, y_dim])
- _ = nn_ops.dropout(t, keep_prob, noise_shape=[x_dim, 1])
- _ = nn_ops.dropout(t, keep_prob, noise_shape=[1, 1])
-
- def testNoDropoutFast(self):
- x = array_ops.zeros((5,))
- y = nn_ops.dropout(x, keep_prob=1)
- self.assertTrue(x is y)
-
- y = nn_ops.dropout_v2(x, rate=0)
- self.assertTrue(x is y)
-
- def testDropoutWithIntegerInputs(self):
- x = constant_op.constant([1, 1, 1, 1, 1])
- with self.assertRaises(ValueError):
- _ = nn_ops.dropout(x, 0.5)
-
-
- class ComputeSampledLogitsTest(test_lib.TestCase):
-
- def setUp(self):
- self._eps = 1e-3
-
- def _GenerateTestData(self, num_classes, dim, batch_size, num_true, labels,
- sampled, subtract_log_q):
- """Randomly generates input/output data for a single test case.
-
- This function returns numpy constants for use in a test case.
-
- Args:
- num_classes: An int. The number of embedding classes in the test case.
- dim: An int. The dimension of the embedding.
- batch_size: An int. The batch size.
- num_true: An int. The number of target classes per training example.
- labels: A list of batch_size * num_true ints. The target classes.
- sampled: A list of indices in [0, num_classes).
- subtract_log_q: A bool corresponding to the parameter in
- _compute_sampled_logits().
-
- Returns:
- weights: Embedding weights to use as test input. It is a numpy array
- of shape [num_classes, dim]
- biases: Embedding biases to use as test input. It is a numpy array
- of shape [num_classes].
- hidden_acts: Forward activations of the network to use as test input.
- It is a numpy array of shape [batch_size, dim].
- sampled_vals: A tuple based on `sampled` to use as test input in the
- format returned by a *_candidate_sampler function.
- exp_logits: The output logits expected from _compute_sampled_logits().
- It is a numpy array of shape [batch_size, num_true + len(sampled)].
- exp_labels: The output labels expected from _compute_sampled_logits().
- It is a numpy array of shape [batch_size, num_true + len(sampled)].
- """
- weights = np.random.randn(num_classes, dim).astype(np.float32)
- biases = np.random.randn(num_classes).astype(np.float32)
- hidden_acts = np.random.randn(batch_size, dim).astype(np.float32)
-
- true_exp = np.full([batch_size, 1], fill_value=0.5, dtype=np.float32)
- sampled_exp = np.full([len(sampled)], fill_value=0.5, dtype=np.float32)
- sampled_vals = (sampled, true_exp, sampled_exp)
-
- sampled_w, sampled_b = weights[sampled], biases[sampled]
- true_w, true_b = weights[labels], biases[labels]
-
- true_logits = np.sum(
- hidden_acts.reshape((batch_size, 1, dim)) * true_w.reshape(
- (batch_size, num_true, dim)),
- axis=2)
- true_b = true_b.reshape((batch_size, num_true))
- true_logits += true_b
- sampled_logits = np.dot(hidden_acts, sampled_w.T) + sampled_b
-
- if subtract_log_q:
- true_logits -= np.log(true_exp)
- sampled_logits -= np.log(sampled_exp[np.newaxis, :])
-
- exp_logits = np.concatenate([true_logits, sampled_logits], axis=1)
- exp_labels = np.hstack((np.ones_like(true_logits) / num_true,
- np.zeros_like(sampled_logits)))
-
- return weights, biases, hidden_acts, sampled_vals, exp_logits, exp_labels
-
- def _ShardTestEmbeddings(self, weights, biases, num_shards):
- """Shards the weights and biases returned by _GenerateTestData.
-
- Args:
- weights: The weights returned by _GenerateTestData.
- biases: The biases returned by _GenerateTestData.
- num_shards: The number of shards to create.
-
- Returns:
- sharded_weights: A list of size `num_shards` containing all the weights.
- sharded_biases: A list of size `num_shards` containing all the biases.
- """
- with ops.Graph().as_default() as g:
- sharded_weights = variable_scope.get_variable(
- "w",
- partitioner=partitioned_variables.fixed_size_partitioner(num_shards),
- initializer=constant_op.constant(weights))
- sharded_biases = variable_scope.get_variable(
- "b",
- partitioner=partitioned_variables.fixed_size_partitioner(num_shards),
- initializer=constant_op.constant(biases))
- with self.session(graph=g) as sess:
- variables.global_variables_initializer().run()
- return self.evaluate([list(sharded_weights), list(sharded_biases)])
-
- def testShapes(self):
- np.random.seed(0)
- num_classes = 5
- batch_size = 3
-
- for num_true in range(1, 5):
- labels = np.random.randint(
- low=0, high=num_classes, size=batch_size * num_true)
- (weights, biases, hidden_acts, sampled_vals, exp_logits,
- exp_labels) = self._GenerateTestData(
- num_classes=num_classes,
- dim=10,
- batch_size=batch_size,
- num_true=num_true,
- labels=labels,
- sampled=[1, 0, 2, 3],
- subtract_log_q=False)
- logits_tensor, labels_tensor = _compute_sampled_logits(
- weights=constant_op.constant(weights),
- biases=constant_op.constant(biases),
- labels=constant_op.constant(
- labels, dtype=dtypes.int64, shape=(batch_size, num_true)),
- inputs=constant_op.constant(hidden_acts),
- num_sampled=4,
- num_classes=num_classes,
- num_true=num_true,
- sampled_values=sampled_vals,
- subtract_log_q=False,
- remove_accidental_hits=False,
- partition_strategy="div",
- name="sampled_logits_basic_num_true_%d" % num_true)
- got_logits, got_labels = self.evaluate([logits_tensor, labels_tensor])
- self.assertEqual(exp_logits.shape, got_logits.shape, self._eps)
- self.assertEqual(exp_labels.shape, got_labels.shape, self._eps)
-
- def testBasic(self):
- """Without accidental hit removal or subtract_log_q."""
- np.random.seed(0)
- num_classes = 5
- batch_size = 3
-
- for num_true in range(1, 5):
- labels = np.random.randint(
- low=0, high=num_classes, size=batch_size * num_true)
- (weights, biases, hidden_acts, sampled_vals, exp_logits,
- exp_labels) = self._GenerateTestData(
- num_classes=num_classes,
- dim=10,
- batch_size=batch_size,
- num_true=num_true,
- labels=labels,
- sampled=[1, 0, 2, 3],
- subtract_log_q=False)
- logits_tensor, labels_tensor = _compute_sampled_logits(
- weights=constant_op.constant(weights),
- biases=constant_op.constant(biases),
- labels=constant_op.constant(
- labels, dtype=dtypes.int64, shape=(batch_size, num_true)),
- inputs=constant_op.constant(hidden_acts),
- num_sampled=4,
- num_classes=num_classes,
- num_true=num_true,
- sampled_values=sampled_vals,
- subtract_log_q=False,
- remove_accidental_hits=False,
- partition_strategy="div",
- name="sampled_logits_basic_num_true_%d" % num_true)
- got_logits, got_labels = self.evaluate([logits_tensor, labels_tensor])
- self.assertAllClose(exp_logits, got_logits, self._eps)
- self.assertAllClose(exp_labels, got_labels, self._eps)
-
- def testAccidentalHitRemoval(self):
- """With accidental hit removal, no subtract_log_q."""
- np.random.seed(0)
- num_classes = 5
- batch_size = 3
- sampled = [1, 0, 2, 3]
-
- for num_true in range(1, 5):
- labels = np.random.randint(
- low=0, high=num_classes, size=batch_size * num_true)
- (weights, biases, hidden_acts, sampled_vals, _,
- _) = self._GenerateTestData(
- num_classes=num_classes,
- dim=10,
- batch_size=batch_size,
- num_true=num_true,
- labels=labels,
- sampled=sampled,
- subtract_log_q=False)
- logits_tensor, _ = _compute_sampled_logits(
- weights=constant_op.constant(weights),
- biases=constant_op.constant(biases),
- labels=constant_op.constant(
- labels, dtype=dtypes.int64, shape=(batch_size, num_true)),
- inputs=constant_op.constant(hidden_acts),
- num_sampled=len(sampled),
- num_classes=num_classes,
- num_true=num_true,
- sampled_values=sampled_vals,
- subtract_log_q=False,
- remove_accidental_hits=True,
- partition_strategy="div",
- name="sampled_logits_accidental_hit_removal_num_true_%d" % num_true)
- # Test that the exponentiated logits of accidental hits are near 0.
- # First we need to find the hits in this random test run:
- labels_reshape = labels.reshape((batch_size, num_true))
- got_logits = self.evaluate(logits_tensor)
- for row in xrange(batch_size):
- row_labels = labels_reshape[row, :]
- for col in xrange(len(sampled)):
- if sampled[col] in row_labels:
- # We need to add the num_true_test offset into logits_*
- self.assertNear(
- np.exp(got_logits[row, col + num_true]), 0., self._eps)
-
- def testSubtractLogQ(self):
- """With subtract_log_q, no accidental hit removal."""
- np.random.seed(0)
- num_classes = 5
- batch_size = 3
-
- for num_true in range(1, 5):
- labels = np.random.randint(
- low=0, high=num_classes, size=batch_size * num_true)
- (weights, biases, hidden_acts, sampled_vals, exp_logits,
- exp_labels) = self._GenerateTestData(
- num_classes=num_classes,
- dim=10,
- batch_size=batch_size,
- num_true=num_true,
- labels=labels,
- sampled=[1, 0, 2, 3],
- subtract_log_q=True)
- logits_tensor, labels_tensor = _compute_sampled_logits(
- weights=constant_op.constant(weights),
- biases=constant_op.constant(biases),
- labels=constant_op.constant(
- labels, dtype=dtypes.int64, shape=(batch_size, num_true)),
- inputs=constant_op.constant(hidden_acts),
- num_sampled=4,
- num_classes=num_classes,
- num_true=num_true,
- sampled_values=sampled_vals,
- subtract_log_q=True,
- remove_accidental_hits=False,
- partition_strategy="div",
- name="sampled_logits_subtract_log_q_num_true_%d" % num_true)
- got_logits, got_labels = self.evaluate([logits_tensor, labels_tensor])
- self.assertAllClose(exp_logits, got_logits, self._eps)
- self.assertAllClose(exp_labels, got_labels, self._eps)
-
- def testSharded(self):
- """With sharded weights and sharded biases."""
- np.random.seed(0)
- num_classes = 5
- batch_size = 3
-
- for num_true in range(1, 5):
- labels = np.random.randint(
- low=0, high=num_classes, size=batch_size * num_true)
- (weights, biases, hidden_acts, sampled_vals, exp_logits,
- exp_labels) = self._GenerateTestData(
- num_classes=num_classes,
- dim=10,
- batch_size=batch_size,
- num_true=num_true,
- labels=labels,
- sampled=[1, 0, 2, 3],
- subtract_log_q=False)
- weight_shards, bias_shards = self._ShardTestEmbeddings(
- weights, biases, num_shards=3)
- logits_tensor, labels_tensor = _compute_sampled_logits(
- weights=[constant_op.constant(shard) for shard in weight_shards],
- biases=[constant_op.constant(shard) for shard in bias_shards],
- labels=constant_op.constant(
- labels, dtype=dtypes.int64, shape=(batch_size, num_true)),
- inputs=constant_op.constant(hidden_acts),
- num_sampled=4,
- num_classes=num_classes,
- num_true=num_true,
- sampled_values=sampled_vals,
- subtract_log_q=False,
- remove_accidental_hits=False,
- partition_strategy="div",
- name="sampled_logits_sharded_num_true_%d" % num_true)
- got_logits, got_labels = self.evaluate([logits_tensor, labels_tensor])
- self.assertAllClose(exp_logits, got_logits, self._eps)
- self.assertAllClose(exp_labels, got_labels, self._eps)
-
- def testNCELoss(self):
- # A simple test to verify the numerics.
-
- def _SigmoidCrossEntropyWithLogits(logits, targets):
- # logits, targets: float arrays of the same shape.
- assert logits.shape == targets.shape
- pred = 1. / (1. + np.exp(-logits))
- eps = 0.0001
- pred = np.minimum(np.maximum(pred, eps), 1 - eps)
- return -targets * np.log(pred) - (1. - targets) * np.log(1. - pred)
-
- np.random.seed(0)
- num_classes = 5
- batch_size = 3
- labels = [0, 1, 2]
- (weights, biases, hidden_acts, sampled_vals, exp_logits,
- exp_labels) = self._GenerateTestData(
- num_classes=num_classes,
- dim=10,
- batch_size=batch_size,
- num_true=1,
- labels=labels,
- sampled=[1, 0, 2, 3],
- subtract_log_q=True)
- exp_nce_loss = np.sum(
- _SigmoidCrossEntropyWithLogits(exp_logits, exp_labels), 1)
-
- got_nce_loss = nn_impl.nce_loss_v2(
- weights=constant_op.constant(weights),
- biases=constant_op.constant(biases),
- labels=constant_op.constant(labels, shape=(batch_size, 1)),
- inputs=constant_op.constant(hidden_acts),
- num_sampled=4,
- num_classes=num_classes,
- num_true=1,
- sampled_values=sampled_vals)
-
- self.assertAllClose(exp_nce_loss, self.evaluate(got_nce_loss), 1e-4)
-
- # Test with sharded weights and sharded biases.
- weight_shards, bias_shards = self._ShardTestEmbeddings(
- weights, biases, num_shards=3)
- got_nce_loss = nn_impl.nce_loss_v2(
- weights=[constant_op.constant(shard) for shard in weight_shards],
- biases=[constant_op.constant(shard) for shard in bias_shards],
- labels=constant_op.constant(labels, shape=(batch_size, 1)),
- inputs=constant_op.constant(hidden_acts),
- num_sampled=4,
- num_classes=num_classes,
- num_true=1,
- sampled_values=sampled_vals)
-
- self.assertAllClose(exp_nce_loss, self.evaluate(got_nce_loss), 1e-4)
-
- def testSampledSoftmaxLoss(self):
- # A simple test to verify the numerics.
-
- def _SoftmaxCrossEntropyWithLogits(logits, targets):
- # logits, targets: float arrays of the same shape.
- assert logits.shape == targets.shape
- stable_exp_logits = np.exp(
- logits - np.amax(logits, axis=1, keepdims=True))
- pred = stable_exp_logits / np.sum(stable_exp_logits, 1, keepdims=True)
- return -np.sum(targets * np.log(pred + 1.0e-20), axis=1)
-
- np.random.seed(0)
- num_classes = 5
- batch_size = 3
- labels = [0, 1, 2]
- (weights, biases, hidden_acts, sampled_vals, exp_logits,
- exp_labels) = self._GenerateTestData(
- num_classes=num_classes,
- dim=10,
- batch_size=batch_size,
- num_true=1,
- labels=labels,
- sampled=[1, 0, 2, 3],
- subtract_log_q=True)
- exp_sampled_softmax_loss = _SoftmaxCrossEntropyWithLogits(
- exp_logits, exp_labels)
-
- got_sampled_softmax_loss = nn_impl.sampled_softmax_loss_v2(
- weights=constant_op.constant(weights),
- biases=constant_op.constant(biases),
- labels=constant_op.constant(labels, shape=(batch_size, 1)),
- inputs=constant_op.constant(hidden_acts),
- num_sampled=4,
- num_classes=num_classes,
- num_true=1,
- sampled_values=sampled_vals,
- remove_accidental_hits=False)
-
- self.assertAllClose(exp_sampled_softmax_loss,
- self.evaluate(got_sampled_softmax_loss), 1e-4)
-
- # Test with sharded weights and sharded biases.
- weight_shards, bias_shards = self._ShardTestEmbeddings(
- weights, biases, num_shards=3)
- got_sampled_softmax_loss = nn_impl.sampled_softmax_loss_v2(
- weights=[constant_op.constant(shard) for shard in weight_shards],
- biases=[constant_op.constant(shard) for shard in bias_shards],
- labels=constant_op.constant(labels, shape=(batch_size, 1)),
- inputs=constant_op.constant(hidden_acts),
- num_sampled=4,
- num_classes=num_classes,
- num_true=1,
- sampled_values=sampled_vals,
- remove_accidental_hits=False)
-
- self.assertAllClose(exp_sampled_softmax_loss,
- self.evaluate(got_sampled_softmax_loss), 1e-4)
-
- def testSampledSoftmaxLossBf16(self):
- # A simple test to verify the numerics for bfloat16.
- def _SoftmaxCrossEntropyWithLogits(logits, targets):
- # logits, targets: float arrays of the same shape.
- assert logits.shape == targets.shape
- stable_exp_logits = np.exp(
- logits - np.amax(logits, axis=1, keepdims=True))
- pred = stable_exp_logits / np.sum(stable_exp_logits, 1, keepdims=True)
- return -np.sum(targets * np.log(pred + 1.0e-20), axis=1)
-
- np.random.seed(0)
- num_classes = 5
- batch_size = 3
- labels = [0, 1, 2]
- sampled = [1, 0, 2, 3]
- (weights, biases, hidden_acts, _, exp_logits,
- exp_labels) = self._GenerateTestData(
- num_classes=num_classes,
- dim=10,
- batch_size=batch_size,
- num_true=1,
- labels=labels,
- sampled=sampled,
- subtract_log_q=True)
- exp_sampled_softmax_loss = _SoftmaxCrossEntropyWithLogits(
- exp_logits, exp_labels)
-
- true_exp_bf16 = np.full([batch_size, 1],
- fill_value=0.5,
- dtype=dtypes.bfloat16.as_numpy_dtype)
- sampled_exp_bf16 = np.full([len(sampled)],
- fill_value=0.5,
- dtype=dtypes.bfloat16.as_numpy_dtype)
- sampled_vals_bf16 = (sampled, true_exp_bf16, sampled_exp_bf16)
-
- got_sampled_softmax_loss = math_ops.cast(
- nn_impl.sampled_softmax_loss_v2(
- weights=constant_op.constant(weights, dtype=dtypes.bfloat16),
- biases=constant_op.constant(biases, dtype=dtypes.bfloat16),
- labels=constant_op.constant(
- labels, shape=(batch_size, 1), dtype=dtypes.bfloat16),
- inputs=constant_op.constant(hidden_acts, dtype=dtypes.bfloat16),
- num_sampled=4,
- num_classes=num_classes,
- num_true=1,
- sampled_values=sampled_vals_bf16,
- remove_accidental_hits=False), dtypes.float32)
-
- self.assertAllClose(exp_sampled_softmax_loss,
- self.evaluate(got_sampled_softmax_loss), 1e-1)
-
-
- class CReluTest(test_lib.TestCase):
-
- def test(self):
- np.random.seed(1) # Make it reproducible.
- x = np.random.randn(3, 4).astype(np.float32)
- y = np.concatenate([x * (x > 0), -x * (x < 0)], axis=1)
-
- z = self.evaluate(nn_ops.crelu(constant_op.constant(x)))
- self.assertAllClose(y, z, 1e-4)
-
-
- class ReluTest(test_lib.TestCase):
-
- def test(self):
- np.random.seed(1) # Make it reproducible.
- x = np.random.randn(3, 4).astype(np.float32)
- y = np.maximum(x, 0.0)
-
- z = self.evaluate(nn_ops.relu(constant_op.constant(x)))
- self.assertAllEqual(y, z)
-
- @test_util.run_deprecated_v1
- def testNaNs(self):
- # Test that relu(nan) = nan for various sizes.
- for i in range(18):
- x = np.zeros(i) + np.nan
- with self.cached_session():
- z = nn_ops.relu(constant_op.constant(x)).eval()
- self.assertTrue(np.isnan(z).all())
-
-
- class LeakyReluTest(test_lib.TestCase):
-
- def testRange(self):
- batch_size = 3
- height, width = 4, 4
- np.random.seed(1) # Make it reproducible.
- inputs = np.random.uniform(size=(batch_size, height, width, 3)).astype(
- np.float32)
- inputs = constant_op.constant(inputs)
-
- outputs = nn_ops.leaky_relu(inputs)
- self.assertEquals(inputs.shape, outputs.shape)
-
- inputs, outputs = self.evaluate([inputs, outputs])
-
- self.assertGreaterEqual(outputs.min(), 0.0)
- self.assertLessEqual(outputs.max(), 1.0)
- self.assertAllClose(inputs, outputs)
-
- @test_util.run_deprecated_v1
- def testValues(self):
- for dtype in [np.int32, np.int64, np.float16, np.float32, np.float64]:
- np_values = np.array([-2, -1, 0, 1, 2], dtype=dtype)
- outputs = nn_ops.leaky_relu(constant_op.constant(np_values))
-
- outputs = self.evaluate(outputs)
-
- tol = 2e-3 if dtype == np.float16 else 1e-6
- self.assertAllClose(
- outputs, [-0.4, -0.2, 0.0, 1.0, 2.0], rtol=tol, atol=tol)
-
- @test_util.run_deprecated_v1
- def testName(self):
- np_values = np.array([-2, -1, 0, 1, 2], dtype=np.float64)
- outputs_with_name_set = nn_ops.leaky_relu(
- constant_op.constant(np_values),
- name='test_relu_op')
- self.assertEqual(outputs_with_name_set.name, 'test_relu_op:0')
- outputs_without_name_set = nn_ops.leaky_relu(
- constant_op.constant(np_values))
- self.assertEqual(outputs_without_name_set.name, 'LeakyRelu:0')
-
-
- class SwishTest(test_lib.TestCase):
-
- @test_util.run_deprecated_v1
- def testValues(self):
- np_values = np.array(
- [np.linspace(-10.0, 0.0, 100),
- np.linspace(0.0, 10.0, 100)],
- dtype=np.float32)
- tf_values = constant_op.constant(np_values)
- actual_tf_outputs = nn_impl.swish(tf_values)
- expected_tf_outputs = tf_values * math_ops.sigmoid(tf_values)
-
- actual_outputs, expected_outputs = self.evaluate(
- [actual_tf_outputs, expected_tf_outputs])
-
- self.assertAllClose(actual_outputs, expected_outputs)
-
- @test_util.run_deprecated_v1
- def testGradients(self):
- shape = [5, 3, 4]
- sigma = 5
- input_values = np.random.randn(*shape) * sigma
- x_tf = constant_op.constant(input_values)
- y_tf = nn_impl.swish(x_tf)
- with self.cached_session():
- err = gradient_checker.compute_gradient_error(x_tf, shape, y_tf, shape)
- self.assertLess(err, 1e-4)
-
-
- class MomentsTest(test_lib.TestCase):
-
- def doOutputTest(self,
- input_shape,
- moments_axes,
- tol=1e-4,
- check_gradients=False):
- for mu in [0.0, 1.0, 1e3]:
- for sigma in [1.0, 0.1]:
- for keep_dims in [True, False]:
- input_values = np.random.rand(*input_shape) * sigma + mu
- expected_mean = np.mean(
- input_values, axis=moments_axes, keepdims=keep_dims)
- expected_var = np.var(
- input_values, axis=moments_axes, keepdims=keep_dims)
- with ops.Graph().as_default() as g:
- with self.session(graph=g) as sess:
- inputs = constant_op.constant(
- input_values, shape=input_shape, dtype=dtypes.float32)
- mean, variance = nn_impl.moments_v2(
- inputs, moments_axes, keepdims=keep_dims)
-
- if check_gradients:
- err = gradient_checker.compute_gradient_error(
- inputs, input_shape, mean, mean.shape.as_list())
- self.assertLess(err, 1e-3)
- err = gradient_checker.compute_gradient_error(
- inputs, input_shape, variance, variance.shape.as_list())
- self.assertLess(err, 1e-3)
-
- # Evaluate.
- [mean, variance] = self.evaluate([mean, variance])
- # Make sure that there are no NaNs
- self.assertFalse(np.isnan(mean).any())
- self.assertFalse(np.isnan(variance).any())
- self.assertAllClose(mean, expected_mean, rtol=tol, atol=tol)
- self.assertAllClose(variance, expected_var, rtol=tol, atol=tol)
-
- def testOutputAndGradient2DInput0(self):
- self.doOutputTest((10, 10), (0,), check_gradients=True)
-
- def testOutputAndGradient2DInput01(self):
- self.doOutputTest((10, 10), (0, 1), check_gradients=True)
-
- def testOutput2DInput0(self):
- self.doOutputTest((10, 300), (0,))
-
- def testOutput2DInput1(self):
- self.doOutputTest((10, 300), (1,))
-
- def testOutput2DInput01(self):
- self.doOutputTest((10, 300), (0, 1))
-
- def testOutput4DInput0(self):
- self.doOutputTest((10, 10, 10, 30), (0,))
-
- def testOutput4DInput1(self):
- self.doOutputTest((10, 10, 10, 30), (1,))
-
- def testOutput4DInput3(self):
- self.doOutputTest((10, 10, 10, 30), (3,))
-
- def testOutput4DInput012(self):
- self.doOutputTest((10, 10, 10, 30), (0, 1, 2))
-
- def testOutput4DInput123(self):
- self.doOutputTest((10, 10, 10, 30), (1, 2, 3))
-
-
- class DataFormatDimMapTest(test_lib.TestCase):
-
- def _test(self, x_val, y_val_expected):
- x = constant_op.constant(x_val)
- y = nn_ops.data_format_dim_map(x)
-
- y_val = self.evaluate(y)
- self.assertAllEqual(y_val, y_val_expected)
-
- def test(self):
- self._test(0, 0)
- self._test(1, 2)
- self._test(2, 3)
- self._test(3, 1)
- self._test(-1, 1)
- self._test(-2, 3)
- self._test(-3, 2)
- self._test(-4, 0)
- self._test([1, 3], [2, 1])
- self._test([1, 3, -2], [2, 1, 3])
- self._test([1, -3, -2], [2, 2, 3])
- self._test([[1, -3], [1, -1]], [[2, 2], [2, 1]])
-
- def testNHWCtoNCHW(self):
- x_val = [1, -3, -2]
- y_val_expected = [2, 2, 3]
- x = constant_op.constant(x_val)
- y = nn_ops.data_format_dim_map(x, src_format="NHWC", dst_format="NCHW")
- with test_util.use_gpu():
- y_val = self.evaluate(y)
- self.assertAllEqual(y_val, y_val_expected)
-
- def testNHWCtoHWNC(self):
- x_val = [-4, -3, -2, -1, 0, 1, 2, 3]
- y_val_expected = [2, 0, 1, 3, 2, 0, 1, 3]
- x = constant_op.constant(x_val)
- y = nn_ops.data_format_dim_map(x, src_format="NHWC", dst_format="HWNC")
- with test_util.use_gpu():
- y_val = self.evaluate(y)
- self.assertAllEqual(y_val, y_val_expected)
-
- def testNHWCtoWHCN(self):
- x_val = [-4, -3, -2, -1, 0, 1, 2, 3]
- y_val_expected = [3, 1, 0, 2, 3, 1, 0, 2]
- x = constant_op.constant(x_val)
- y = nn_ops.data_format_dim_map(x, src_format="NHWC", dst_format="WHCN")
- with test_util.use_gpu():
- y_val = self.evaluate(y)
- self.assertAllEqual(y_val, y_val_expected)
-
- def testArbitraryASCII(self):
- x_val = [-4, -3, -2, -1, 0, 1, 2, 3]
- y_val_expected = [3, 2, 1, 0, 3, 2, 1, 0]
- x = constant_op.constant(x_val)
- y = nn_ops.data_format_dim_map(x, src_format="qwer", dst_format="rewq")
- with test_util.use_gpu():
- y_val = self.evaluate(y)
- self.assertAllEqual(y_val, y_val_expected)
-
-
- class DataFormatVectorPermuteTest(test_lib.TestCase):
-
- def testNHWCToNCHW(self):
- x_val = [7, 4, 9, 3]
- x = constant_op.constant(x_val)
- y = nn_ops.data_format_vec_permute(x)
- with test_util.use_gpu():
- y_val = self.evaluate(y)
- self.assertAllEqual(y_val, [7, 3, 4, 9])
-
- def testNCHWToNHWC(self):
- x_val = [7, 4, 9, 3]
- x = constant_op.constant(x_val)
- y = nn_ops.data_format_vec_permute(x, src_format="NCHW", dst_format="NHWC")
- with test_util.use_gpu():
- y_val = self.evaluate(y)
- self.assertAllEqual(y_val, [7, 9, 3, 4])
-
- def testNHWCToHWNC(self):
- x_val = [7, 4, 9, 3]
- x = constant_op.constant(x_val)
- y = nn_ops.data_format_vec_permute(x, src_format="NHWC", dst_format="HWNC")
- with test_util.use_gpu():
- y_val = self.evaluate(y)
- self.assertAllEqual(y_val, [4, 9, 7, 3])
-
- def testHWNCToNHWC(self):
- x_val = [7, 4, 9, 3]
- x = constant_op.constant(x_val)
- y = nn_ops.data_format_vec_permute(x, src_format="HWNC", dst_format="NHWC")
- with test_util.use_gpu():
- y_val = self.evaluate(y)
- self.assertAllEqual(y_val, [9, 7, 4, 3])
-
- def testNHWCToNCHW2D(self):
- x_val = [[7, 4], [9, 3], [4, 5], [5, 1]]
- x = constant_op.constant(x_val)
- y = nn_ops.data_format_vec_permute(x)
- with test_util.use_gpu():
- y_val = self.evaluate(y)
- self.assertAllEqual(y_val, [[7, 4], [5, 1], [9, 3], [4, 5]])
-
- def testNHWCToHWNC2D(self):
- x_val = [[7, 4], [9, 3], [4, 5], [5, 1]]
- x = constant_op.constant(x_val)
- y = nn_ops.data_format_vec_permute(x, src_format="NHWC", dst_format="HWNC")
- with test_util.use_gpu():
- y_val = self.evaluate(y)
- self.assertAllEqual(y_val, [[9, 3], [4, 5], [7, 4], [5, 1]])
-
- def testHWNCToNHWC2D(self):
- x_val = [[7, 4], [9, 3], [4, 5], [5, 1]]
- x = constant_op.constant(x_val)
- y = nn_ops.data_format_vec_permute(x, src_format="HWNC", dst_format="NHWC")
- with test_util.use_gpu():
- y_val = self.evaluate(y)
- self.assertAllEqual(y_val, [[4, 5], [7, 4], [9, 3], [5, 1]])
-
- def testNCHWToNHWC2D(self):
- x_val = [[7, 4], [9, 3], [4, 5], [5, 1]]
- x = constant_op.constant(x_val)
- y = nn_ops.data_format_vec_permute(x, src_format="NCHW", dst_format="NHWC")
- with test_util.use_gpu():
- y_val = self.evaluate(y)
- self.assertAllEqual(y_val, [[7, 4], [4, 5], [5, 1], [9, 3]])
-
-
- if __name__ == "__main__":
- test_lib.main()
|