|
- using NumSharp;
- using System;
- using System.Collections.Generic;
- using System.Diagnostics;
- using System.IO;
- using Console = Colorful.Console;
- using System.Linq;
- using System.Net;
- using System.Text;
- using Tensorflow;
- using System.Drawing;
- using static Tensorflow.Python;
-
- namespace TensorFlowNET.Examples
- {
- /// <summary>
- /// Inception v3 is a widely-used image recognition model
- /// that has been shown to attain greater than 78.1% accuracy on the ImageNet dataset.
- /// The model is the culmination of many ideas developed by multiple researchers over the years.
- /// </summary>
- public class ImageRecognitionInception : IExample
- {
- public bool Enabled { get; set; } = true;
- public string Name => "Image Recognition Inception";
- public bool IsImportingGraph { get; set; } = false;
-
-
- string dir = "ImageRecognitionInception";
- string pbFile = "tensorflow_inception_graph.pb";
- string labelFile = "imagenet_comp_graph_label_strings.txt";
- List<NDArray> file_ndarrays = new List<NDArray>();
-
- public bool Run()
- {
- PrepareData();
-
- var graph = new Graph().as_default();
- //import GraphDef from pb file
- graph.Import(Path.Join(dir, pbFile));
-
- var input_name = "input";
- var output_name = "output";
-
- var input_operation = graph.OperationByName(input_name);
- var output_operation = graph.OperationByName(output_name);
-
- var labels = File.ReadAllLines(Path.Join(dir, labelFile));
- var result_labels = new List<string>();
- var sw = new Stopwatch();
-
- with(tf.Session(graph), sess =>
- {
- foreach (var nd in file_ndarrays)
- {
- sw.Restart();
-
- var results = sess.run(output_operation.outputs[0], new FeedItem(input_operation.outputs[0], nd));
- results = np.squeeze(results);
- int idx = np.argmax(results);
-
- Console.WriteLine($"{labels[idx]} {results[idx]} in {sw.ElapsedMilliseconds}ms", Color.Tan);
- result_labels.Add(labels[idx]);
- }
- });
-
- return result_labels.Contains("military uniform");
- }
-
- private NDArray ReadTensorFromImageFile(string file_name,
- int input_height = 224,
- int input_width = 224,
- int input_mean = 117,
- int input_std = 1)
- {
- return with(tf.Graph().as_default(), graph =>
- {
- var file_reader = tf.read_file(file_name, "file_reader");
- var decodeJpeg = tf.image.decode_jpeg(file_reader, channels: 3, name: "DecodeJpeg");
- var cast = tf.cast(decodeJpeg, tf.float32);
- var dims_expander = tf.expand_dims(cast, 0);
- var resize = tf.constant(new int[] { input_height, input_width });
- var bilinear = tf.image.resize_bilinear(dims_expander, resize);
- var sub = tf.subtract(bilinear, new float[] { input_mean });
- var normalized = tf.divide(sub, new float[] { input_std });
-
- return with(tf.Session(graph), sess => sess.run(normalized));
- });
- }
-
- public void PrepareData()
- {
- Directory.CreateDirectory(dir);
-
- // get model file
- string url = "https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip";
-
- Utility.Web.Download(url, dir, "inception5h.zip");
-
- Utility.Compress.UnZip(Path.Join(dir, "inception5h.zip"), dir);
-
- // download sample picture
- Directory.CreateDirectory(Path.Join(dir, "img"));
- url = $"https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/label_image/data/grace_hopper.jpg";
- Utility.Web.Download(url, Path.Join(dir, "img"), "grace_hopper.jpg");
-
- url = $"https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/data/shasta-daisy.jpg";
- Utility.Web.Download(url, Path.Join(dir, "img"), "shasta-daisy.jpg");
-
- // load image file
- var files = Directory.GetFiles(Path.Join(dir, "img"));
- for (int i = 0; i < files.Length; i++)
- {
- var nd = ReadTensorFromImageFile(files[i]);
- file_ndarrays.Add(nd);
- }
- }
-
- public Graph ImportGraph()
- {
- throw new NotImplementedException();
- }
-
- public Graph BuildGraph()
- {
- throw new NotImplementedException();
- }
-
- public void Train(Session sess)
- {
- throw new NotImplementedException();
- }
-
- public void Predict(Session sess)
- {
- throw new NotImplementedException();
- }
-
- public void Test(Session sess)
- {
- throw new NotImplementedException();
- }
- }
- }
|