|
- using NumSharp.Core;
- using System;
- using System.Collections.Generic;
- using System.Text;
- using Tensorflow;
-
- namespace TensorFlowNET.Examples
- {
- /// <summary>
- /// A linear regression learning algorithm example using TensorFlow library.
- /// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py
- /// </summary>
- public class LinearRegression : IExample
- {
- private NumPyRandom rng = np.random;
-
- public void Run()
- {
- // Parameters
- double learning_rate = 0.01;
- int training_epochs = 1000;
- int display_step = 50;
-
- // Training Data
- var train_X = np.array(3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779, 6.182, 7.59, 2.167,
- 7.042, 10.791, 5.313, 7.997, 5.654, 9.27, 3.1);
- var train_Y = np.array(1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221,
- 2.827, 3.465, 1.65, 2.904, 2.42, 2.94, 1.3);
- var n_samples = train_X.shape[0];
-
- // tf Graph Input
- var X = tf.placeholder(tf.float64);
- var Y = tf.placeholder(tf.float64);
-
- // Set model weights
- var W = tf.Variable(rng.randn<double>(), name: "weight");
- var b = tf.Variable(rng.randn<double>(), name: "bias");
-
- var mul = tf.multiply(X, W);
- var pred = tf.add(mul, b);
-
- // Mean squared error
- var sub = pred - Y;
- var pow = tf.pow(sub, 2);
-
- var reduce = tf.reduce_sum(pow);
- var cost = reduce / (2d * n_samples);
-
- // radient descent
- // Note, minimize() knows to modify W and b because Variable objects are trainable=True by default
- var grad = tf.train.GradientDescentOptimizer(learning_rate);
- var optimizer = grad.minimize(cost);
-
- // Initialize the variables (i.e. assign their default value)
- var init = tf.global_variables_initializer();
-
- // Start training
- Python.with<Session>(tf.Session(), sess =>
- {
- // Run the initializer
- sess.run(init);
-
- // Fit all training data
- for (int epoch = 0; epoch < training_epochs; epoch++)
- {
- foreach (var (x, y) in Python.zip<double>(train_X, train_Y))
- {
- sess.run(optimizer, feed_dict: new FeedItem[]
- {
- new FeedItem(X, x),
- new FeedItem(Y, y)
- });
- }
-
- // Display logs per epoch step
- if ((epoch + 1) % display_step == 0)
- {
- var c = sess.run(cost, feed_dict: new FeedItem[]
- {
- new FeedItem(X, train_X),
- new FeedItem(Y, train_Y)
- });
- var rW = sess.run(W);
- Console.WriteLine($"Epoch: {epoch + 1} cost={c} " +
- $"W={rW} b={sess.run(b)}");
- }
- }
-
- Console.WriteLine("Optimization Finished!");
- });
- }
- }
- }
|