|
- using Microsoft.VisualStudio.TestTools.UnitTesting;
- using Tensorflow.NumPy;
- using static Tensorflow.KerasApi;
-
- namespace Tensorflow.Keras.UnitTest.Layers
- {
- [TestClass]
- public class LayersConvolutionTest : EagerModeTestBase
- {
- [TestMethod]
- public void BasicConv1D()
- {
- var filters = 8;
-
- var conv = keras.layers.Conv1D(filters, kernel_size: 3, activation: "linear");
-
- var x = np.arange(256.0f).reshape((8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(y.shape, (8, 6, 8));
- Assert.AreEqual(filters, y.shape[2]);
- }
-
- [TestMethod]
- public void BasicConv1D_ksize()
- {
- var filters = 8;
-
- var conv = keras.layers.Conv1D(filters, kernel_size: 3, activation: "linear");
-
- var x = np.arange(256.0f).reshape((8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(3, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1] - 2, y.shape[1]);
- Assert.AreEqual(filters, y.shape[2]);
- }
-
- [TestMethod]
- public void BasicConv1D_ksize_same()
- {
- var filters = 8;
-
- var conv = keras.layers.Conv1D(filters, kernel_size: 3, padding: "same", activation: "linear");
-
- var x = np.arange(256.0f).reshape((8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(3, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1], y.shape[1]);
- Assert.AreEqual(filters, y.shape[2]);
- }
-
- [TestMethod]
- public void BasicConv1D_ksize_strides()
- {
- var filters = 8;
- var conv = keras.layers.Conv1D(filters, kernel_size: 3, strides: 2, activation: "linear");
-
- var x = np.arange(256.0f).reshape((8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(3, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1] - 5, y.shape[1]);
- Assert.AreEqual(filters, y.shape[2]);
- }
-
- [TestMethod]
- public void BasicConv1D_ksize_dilations()
- {
- var filters = 8;
- var conv = keras.layers.Conv1D(filters, kernel_size: 3, dilation_rate: 2, activation: "linear");
-
- var x = np.arange(256.0f).reshape((8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(3, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1] - 4, y.shape[1]);
- Assert.AreEqual(filters, y.shape[2]);
- }
-
- [TestMethod]
- public void BasicConv1D_ksize_dilation_same()
- {
- var filters = 8;
- var conv = keras.layers.Conv1D(filters, kernel_size: 3, dilation_rate: 2, padding: "same", activation: "linear");
-
- var x = np.arange(256.0f).reshape((8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(3, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1], y.shape[1]);
- Assert.AreEqual(filters, y.shape[2]);
- }
-
- [TestMethod]
- public void BasicConv2D()
- {
- var filters = 8;
- var conv = keras.layers.Conv2D(filters, activation: "linear");
-
- var x = np.arange(256.0f).reshape((1, 8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(4, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1] - 4, y.shape[1]);
- Assert.AreEqual(x.dims[2] - 4, y.shape[2]);
- Assert.AreEqual(filters, y.shape[3]);
- }
-
- [TestMethod]
- public void BasicConv2D_ksize()
- {
- var filters = 8;
- var conv = keras.layers.Conv2D(filters, kernel_size: 3, activation: "linear");
-
- var x = np.arange(256.0f).reshape((1, 8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(4, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1] - 2, y.shape[1]);
- Assert.AreEqual(x.dims[2] - 2, y.shape[2]);
- Assert.AreEqual(filters, y.shape[3]);
- }
-
- [TestMethod]
- public void BasicConv2D_ksize_same()
- {
- var filters = 8;
- var conv = keras.layers.Conv2D(filters, kernel_size: 3, padding: "same", activation: "linear");
-
- var x = np.arange(256.0f).reshape((1, 8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(4, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1], y.shape[1]);
- Assert.AreEqual(x.dims[2], y.shape[2]);
- Assert.AreEqual(filters, y.shape[3]);
- }
-
- [TestMethod]
- public void BasicConv2D_ksize_strides()
- {
- var filters = 8;
- var conv = keras.layers.Conv2D(filters, kernel_size: 3, strides: 2, activation: "linear");
-
- var x = np.arange(256.0f).reshape((1, 8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(4, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1] - 5, y.shape[1]);
- Assert.AreEqual(x.dims[2] - 5, y.shape[2]);
- Assert.AreEqual(filters, y.shape[3]);
- }
-
- [TestMethod]
- public void BasicConv2D_ksize_dilation()
- {
- var filters = 8;
- var conv = keras.layers.Conv2D(filters, kernel_size: 3, dilation_rate: 2, activation: "linear");
-
- var x = np.arange(256.0f).reshape((1, 8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(4, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1] - 4, y.shape[1]);
- Assert.AreEqual(x.dims[2] - 4, y.shape[2]);
- Assert.AreEqual(filters, y.shape[3]);
- }
-
- [TestMethod]
- public void BasicConv2D_ksize_dilation_same()
- {
- var filters = 8;
- var conv = keras.layers.Conv2D(filters, kernel_size: 3, dilation_rate: 2, padding: "same", activation: "linear");
-
- var x = np.arange(256.0f).reshape((1, 8, 8, 4));
- var y = conv.Apply(x);
-
- Assert.AreEqual(4, y.shape.ndim);
- Assert.AreEqual(x.dims[0], y.shape[0]);
- Assert.AreEqual(x.dims[1], y.shape[1]);
- Assert.AreEqual(x.dims[2], y.shape[2]);
- Assert.AreEqual(filters, y.shape[3]);
- }
- }
- }
|