/*****************************************************************************
Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
******************************************************************************/
using System;
using System.Collections.Generic;
using System.Linq;
using Tensorflow.Framework;
using static Tensorflow.Binding;
namespace Tensorflow.Train
{
///
/// Optimizer that implements the Adam algorithm.
/// http://arxiv.org/abs/1412.6980
///
public class AdamOptimizer : Optimizer
{
float _beta1;
float _beta2;
float _epsilon;
Tensor _beta1_t, _beta2_t, _epsilon_t;
TF_DataType _dtype;
public AdamOptimizer(float learning_rate, float beta1 = 0.9f, float beta2 = 0.999f, float epsilon = 1e-8f, bool use_locking = false, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = "Adam")
: base(learning_rate, use_locking, name)
{
_beta1 = beta1;
_beta2 = beta2;
_epsilon = epsilon;
_dtype = dtype;
}
public AdamOptimizer(Tensor learning_rate, float beta1 = 0.9f, float beta2 = 0.999f, float epsilon = 1e-8f, bool use_locking = false, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = "Adam")
: base(learning_rate, use_locking, name)
{
_beta1 = beta1;
_beta2 = beta2;
_epsilon = epsilon;
_dtype = dtype;
}
public override Operation _apply_sparse(IndexedSlices grad, RefVariable var)
{
return _apply_sparse_shared(grad.values, var, grad.indices, (x, i, v) =>
{
return state_ops.scatter_add(x, i, v, use_locking: _use_locking);
});
}
public override Operation _apply_dense(Tensor grad, RefVariable var)
{
var m = get_slot(var, "m");
var v = get_slot(var, "v");
var (beta1_power, beta2_power) = _get_beta_accumulators();
return gen_training_ops.apply_adam(
var,
m,
v,
math_ops.cast(beta1_power, var.dtype.as_base_dtype()),
math_ops.cast(beta2_power, var.dtype.as_base_dtype()),
math_ops.cast(_lr_t, var.dtype.as_base_dtype()),
math_ops.cast(_beta1_t, var.dtype.as_base_dtype()),
math_ops.cast(_beta2_t, var.dtype.as_base_dtype()),
math_ops.cast(_epsilon_t, var.dtype.as_base_dtype()),
grad,
use_locking: _use_locking).op;
}
private Operation _apply_sparse_shared(Tensor grad, RefVariable var, Tensor indices, Func scatter_add)
{
var (beta1_power_v, beta2_power_v) = _get_beta_accumulators();
Tensor beta1_power = math_ops.cast(beta1_power_v, var.dtype.as_base_dtype());
Tensor beta2_power = math_ops.cast(beta2_power_v, var.dtype.as_base_dtype());
var lr_t = math_ops.cast(_lr_t, var.dtype.as_base_dtype());
var beta1_t = math_ops.cast(_beta1_t, var.dtype.as_base_dtype());
var beta2_t = math_ops.cast(_beta2_t, var.dtype.as_base_dtype());
var epsilon_t = math_ops.cast(_epsilon_t, var.dtype.as_base_dtype());
var lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power));
var m = get_slot(var, "m");
var m_scaled_g_values = grad * (1 - beta1_t);
var m_t = state_ops.assign(m, m * beta1_t, use_locking: _use_locking);
tf_with(ops.control_dependencies(new[] { m_t }), delegate
{
m_t = scatter_add(m, indices, m_scaled_g_values);
});
var v = get_slot(var, "v");
var v_scaled_g_values = (grad * grad) * (1 - beta2_t);
var v_t = state_ops.assign(v, v * beta2_t, use_locking: _use_locking);
tf_with(ops.control_dependencies(new[] { v_t }), delegate
{
v_t = scatter_add(v, indices, v_scaled_g_values);
});
var v_sqrt = math_ops.sqrt(v_t);
var var_update = state_ops.assign_sub(var, lr * m_t / (v_sqrt + epsilon_t), use_locking: _use_locking);
return control_flow_ops.group(new[] { var_update, m_t, v_t });
}
protected override void _create_slots(RefVariable[] var_list)
{
var first_var = var_list.OrderBy(x => x.Name).First();
_create_non_slot_variable(initial_value: _beta1, name: "beta1_power", colocate_with: first_var);
_create_non_slot_variable(initial_value: _beta2, name: "beta2_power", colocate_with: first_var);
// Create slots for the first and second moments.
foreach(var v in var_list)
{
_zeros_slot(v, "m", Name);
_zeros_slot(v, "v", Name);
}
}
public override Operation _finish(Operation[] update_ops, string name_scope)
{
var operations = new List();
operations.AddRange(update_ops);
tf_with(ops.control_dependencies(update_ops), delegate
{
var (beta1_power, beta2_power) = _get_beta_accumulators();
ops.colocate_with(beta1_power);
var update_beta1 = beta1_power.assign(beta1_power * _beta1_t, use_locking: _use_locking);
var update_beta2 = beta2_power.assign(beta2_power * _beta2_t, use_locking: _use_locking);
operations.Add(update_beta1);
operations.Add(update_beta2);
});
return control_flow_ops.group(operations.ToArray(), name: name_scope);
}
private (RefVariable, RefVariable) _get_beta_accumulators()
{
ops.init_scope();
var graph = ops.get_default_graph();
return (_get_non_slot_variable("beta1_power", graph: graph) as RefVariable,
_get_non_slot_variable("beta2_power", graph: graph) as RefVariable);
}
public override void _prepare()
{
var lr = _call_if_callable(_lr);
var beta1 = _call_if_callable(_beta1);
var beta2 = _call_if_callable(_beta2);
var epsilon = _call_if_callable(_epsilon);
_lr_t = _lr_t ?? ops.convert_to_tensor(lr, name: "learning_rate", dtype: _dtype);
_beta1_t = _beta1_t ?? ops.convert_to_tensor(beta1, name: "beta1", dtype: _dtype);
_beta2_t = _beta2_t ?? ops.convert_to_tensor(beta2, name: "beta2", dtype: _dtype);
_epsilon_t = _epsilon_t ?? ops.convert_to_tensor(epsilon, name: "epsilon", dtype: _dtype);
}
}
}