using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Text; using Tensorflow; using TensorFlowNET.Examples.TextClassification; using TensorFlowNET.Examples.Utility; namespace TensorFlowNET.Examples.CnnTextClassification { /// /// https://github.com/dongjun-Lee/text-classification-models-tf /// public class TextClassificationTrain : Python, IExample { public int Priority => 100; public bool Enabled { get; set; }= false; public string Name => "Text Classification"; public int? DataLimit = null; private string dataDir = "text_classification"; private string dataFileName = "dbpedia_csv.tar.gz"; private const int CHAR_MAX_LEN = 1014; private const int NUM_CLASS = 2; public bool Run() { PrepareData(); Console.WriteLine("Building dataset..."); var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", "vdcnn", CHAR_MAX_LEN, DataLimit); var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f); return with(tf.Session(), sess => { new VdCnn(alphabet_size, CHAR_MAX_LEN, NUM_CLASS); return false; }); } private (int[][], int[][], int[], int[]) train_test_split(int[][] x, int[] y, float test_size = 0.3f) { int len = x.Length; int classes = y.Distinct().Count(); int samples = len / classes; int train_size = int.Parse((samples * (1 - test_size)).ToString()); var train_x = new List(); var valid_x = new List(); var train_y = new List(); var valid_y = new List(); for (int i = 0; i< classes; i++) { for (int j = 0; j < samples; j++) { int idx = i * samples + j; if (idx < train_size + samples * i) { train_x.Add(x[idx]); train_y.Add(y[idx]); } else { valid_x.Add(x[idx]); valid_y.Add(y[idx]); } } } return (train_x.ToArray(), valid_x.ToArray(), train_y.ToArray(), valid_y.ToArray()); } public void PrepareData() { string url = "https://github.com/le-scientifique/torchDatasets/raw/master/dbpedia_csv.tar.gz"; Web.Download(url, dataDir, dataFileName); Compress.ExtractTGZ(Path.Join(dataDir, dataFileName), dataDir); } } }