using Microsoft.VisualStudio.TestTools.UnitTesting; using System.Linq; using Tensorflow.NumPy; using static Tensorflow.KerasApi; using static Tensorflow.Binding; namespace Tensorflow.Keras.UnitTest.Layers { [TestClass] public class LayersConvolutionTest : EagerModeTestBase { [TestMethod] public void BasicConv1D() { var filters = 8; var conv = keras.layers.Conv1D(filters, kernel_size: 3, activation: "linear"); var x = np.arange(256.0f).reshape((8, 8, 4)); var y = conv.Apply(x); Assert.AreEqual(y.shape, (8, 6, 8)); Assert.AreEqual(filters, y.shape[2]); } [TestMethod] public void BasicConv1D_ksize() { var filters = 8; var conv = keras.layers.Conv1D(filters, kernel_size: 3, activation: "linear"); var x = np.arange(256.0f).reshape((8, 8, 4)); var y = conv.Apply(x); Assert.AreEqual(3, y.shape.ndim); Assert.AreEqual(x.dims[0], y.shape[0]); Assert.AreEqual(x.dims[1] - 2, y.shape[1]); Assert.AreEqual(filters, y.shape[2]); } [TestMethod] public void BasicConv1D_ksize_same() { var filters = 8; var conv = keras.layers.Conv1D(filters, kernel_size: 3, padding: "same", activation: "linear"); var x = np.arange(256.0f).reshape((8, 8, 4)); var y = conv.Apply(x); Assert.AreEqual(3, y.shape.ndim); Assert.AreEqual(x.dims[0], y.shape[0]); Assert.AreEqual(x.dims[1], y.shape[1]); Assert.AreEqual(filters, y.shape[2]); } [TestMethod] public void BasicConv1D_ksize_strides() { var filters = 8; var conv = keras.layers.Conv1D(filters, kernel_size: 3, strides: 2, activation: "linear"); var x = np.arange(256.0f).reshape((8, 8, 4)); var y = conv.Apply(x); Assert.AreEqual(3, y.shape.ndim); Assert.AreEqual(x.dims[0], y.shape[0]); Assert.AreEqual(x.dims[1] - 5, y.shape[1]); Assert.AreEqual(filters, y.shape[2]); } [TestMethod] public void BasicConv1D_ksize_dilations() { var filters = 8; var conv = keras.layers.Conv1D(filters, kernel_size: 3, dilation_rate: 2, activation: "linear"); var x = np.arange(256.0f).reshape((8, 8, 4)); var y = conv.Apply(x); Assert.AreEqual(3, y.shape.ndim); Assert.AreEqual(x.dims[0], y.shape[0]); Assert.AreEqual(x.dims[1] - 4, y.shape[1]); Assert.AreEqual(filters, y.shape[2]); } [TestMethod] public void BasicConv1D_ksize_dilation_same() { var filters = 8; var conv = keras.layers.Conv1D(filters, kernel_size: 3, dilation_rate: 2, padding: "same", activation: "linear"); var x = np.arange(256.0f).reshape((8, 8, 4)); var y = conv.Apply(x); Assert.AreEqual(3, y.shape.ndim); Assert.AreEqual(x.dims[0], y.shape[0]); Assert.AreEqual(x.dims[1], y.shape[1]); Assert.AreEqual(filters, y.shape[2]); } [TestMethod] public void BasicConv2D() { var filters = 8; var conv = keras.layers.Conv2D(filters, activation: "linear"); var x = np.arange(256.0f).reshape((1, 8, 8, 4)); var y = conv.Apply(x); Assert.AreEqual(4, y.shape.ndim); Assert.AreEqual(x.dims[0], y.shape[0]); Assert.AreEqual(x.dims[1] - 4, y.shape[1]); Assert.AreEqual(x.dims[2] - 4, y.shape[2]); Assert.AreEqual(filters, y.shape[3]); } [TestMethod] public void BasicConv2D_ksize() { var filters = 8; var conv = keras.layers.Conv2D(filters, kernel_size: 3, activation: "linear"); var x = np.arange(256.0f).reshape((1, 8, 8, 4)); var y = conv.Apply(x); Assert.AreEqual(4, y.shape.ndim); Assert.AreEqual(x.dims[0], y.shape[0]); Assert.AreEqual(x.dims[1] - 2, y.shape[1]); Assert.AreEqual(x.dims[2] - 2, y.shape[2]); Assert.AreEqual(filters, y.shape[3]); } [TestMethod] public void BasicConv2D_ksize_same() { var filters = 8; var conv = keras.layers.Conv2D(filters, kernel_size: 3, padding: "same", activation: "linear"); var x = np.arange(256.0f).reshape((1, 8, 8, 4)); var y = conv.Apply(x); Assert.AreEqual(4, y.shape.ndim); Assert.AreEqual(x.dims[0], y.shape[0]); Assert.AreEqual(x.dims[1], y.shape[1]); Assert.AreEqual(x.dims[2], y.shape[2]); Assert.AreEqual(filters, y.shape[3]); } [TestMethod] public void BasicConv2D_ksize_strides() { var filters = 8; var conv = keras.layers.Conv2D(filters, kernel_size: 3, strides: 2, activation: "linear"); var x = np.arange(256.0f).reshape((1, 8, 8, 4)); var y = conv.Apply(x); Assert.AreEqual(4, y.shape.ndim); Assert.AreEqual(x.dims[0], y.shape[0]); Assert.AreEqual(x.dims[1] - 5, y.shape[1]); Assert.AreEqual(x.dims[2] - 5, y.shape[2]); Assert.AreEqual(filters, y.shape[3]); } [TestMethod] public void BasicConv2D_ksize_dilation() { var filters = 8; var conv = keras.layers.Conv2D(filters, kernel_size: 3, dilation_rate: 2, activation: "linear"); var x = np.arange(256.0f).reshape((1, 8, 8, 4)); var y = conv.Apply(x); Assert.AreEqual(4, y.shape.ndim); Assert.AreEqual(x.dims[0], y.shape[0]); Assert.AreEqual(x.dims[1] - 4, y.shape[1]); Assert.AreEqual(x.dims[2] - 4, y.shape[2]); Assert.AreEqual(filters, y.shape[3]); } [TestMethod] public void BasicConv2D_ksize_dilation_same() { var filters = 8; var conv = keras.layers.Conv2D(filters, kernel_size: 3, dilation_rate: 2, padding: "same", activation: "linear"); var x = np.arange(256.0f).reshape((1, 8, 8, 4)); var y = conv.Apply(x); Assert.AreEqual(4, y.shape.ndim); Assert.AreEqual(x.dims[0], y.shape[0]); Assert.AreEqual(x.dims[1], y.shape[1]); Assert.AreEqual(x.dims[2], y.shape[2]); Assert.AreEqual(filters, y.shape[3]); } [TestMethod] public void BasicDepthwiseConv2D() { var conv = keras.layers.DepthwiseConv2D(kernel_size:3, strides:1, activation: null, padding:"same", depthwise_initializer: "ones"); var x = np.arange(2 * 9* 9* 3).reshape((2, 9, 9, 3)); var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); var y = conv.Apply(x2); print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}"); Assert.AreEqual(4, y.shape.ndim); var arr = y.numpy().reshape((2, 9, 9, 3)); AssertArray(x[new int[] { 1, 1, 1 }].ToArray(), new int[] { 273, 274, 275 }); AssertArray(arr[new int[] { 1, 1, 1 }].ToArray(), new float[] { 2457f, 2466f, 2475f }); var bn = keras.layers.BatchNormalization(); var y2 = bn.Apply(y); arr = y2.numpy().ToArray(); double delta = 0.0001; // 误差范围 Assert.AreEqual(arr[0], 59.97002f, delta); Assert.AreEqual(arr[1], 63.96802f, delta); } [TestMethod] public void BasicDepthwiseConv2D_strides_2() { var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: (1, 2, 2, 1), activation: null, padding: "same", depthwise_initializer: "ones"); var x = np.arange(2 * 9 * 9 * 3).reshape((2, 9, 9, 3)); var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); var y = conv.Apply(x2); print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}"); Assert.AreEqual(4, y.shape.ndim); var arr = y.numpy().reshape((2, 5, 5, 3)); AssertArray(x[new int[] { 1, 1, 1 }].ToArray(), new int[] { 273, 274, 275 }); AssertArray(arr[new int[] { 1, 1, 1 }].ToArray(), new float[] { 2727f, 2736f, 2745f }); var bn = keras.layers.BatchNormalization(); var y2 = bn.Apply(y); arr = y2.numpy().ToArray(); double delta = 0.0001; // 误差范围 Assert.AreEqual(arr[0], 59.97002f, delta); Assert.AreEqual(arr[1], 63.96802f, delta); } [TestMethod] public void BasicDepthwiseConv2D_strides_3() { var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: 3, activation: null, padding: "same", depthwise_initializer: "ones"); var x = np.arange(2 * 9 * 9 * 3).reshape((2, 9, 9, 3)); var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); var y = conv.Apply(x2); print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}"); Assert.AreEqual(4, y.shape.ndim); var arr = y.numpy().reshape((2, 3, 3, 3)); AssertArray(x[new int[] { 1, 1, 1 }].ToArray(), new int[] { 273, 274, 275 }); AssertArray(arr[new int[] { 1, 1, 1 }].ToArray(), new float[] { 3267f, 3276f, 3285f }); var bn = keras.layers.BatchNormalization(); var y2 = bn.Apply(y); arr = y2.numpy().ToArray(); double delta = 0.0001; // 误差范围 Assert.AreEqual(arr[0], 269.86508f, delta); Assert.AreEqual(arr[1], 278.8606f, delta); } [TestMethod] public void BasicDepthwiseConv2D_UseBias() { var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: 1, activation: null, use_bias: true, padding: "same", depthwise_initializer: "ones", bias_initializer:"ones" ); var weight = conv.get_weights(); var x = np.arange(9 * 9 * 3).reshape((1, 9, 9, 3)); var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); var y = conv.Apply(x2); Assert.AreEqual(4, y.shape.ndim); var arr = y.numpy().ToArray(); Assert.AreEqual(arr[0], 61f); Assert.AreEqual(arr[1], 65f); var bn = keras.layers.BatchNormalization(); var y2 = bn.Apply(y); arr = y2.numpy().ToArray(); double delta = 0.0001; // 误差范围 Assert.AreEqual(arr[0], 60.96952f, delta); Assert.AreEqual(arr[1], 64.96752f, delta); } } }