//
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: tensorflow/core/protobuf/config.proto
//
#pragma warning disable 1591, 0612, 3021, 8981
#region Designer generated code
using pb = global::Google.Protobuf;
using pbc = global::Google.Protobuf.Collections;
using pbr = global::Google.Protobuf.Reflection;
using scg = global::System.Collections.Generic;
namespace Tensorflow {
/// Holder for reflection information generated from tensorflow/core/protobuf/config.proto
public static partial class ConfigReflection {
#region Descriptor
/// File descriptor for tensorflow/core/protobuf/config.proto
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}
private static pbr::FileDescriptor descriptor;
static ConfigReflection() {
byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CiV0ZW5zb3JmbG93L2NvcmUvcHJvdG9idWYvY29uZmlnLnByb3RvEgp0ZW5z",
"b3JmbG93Gip0ZW5zb3JmbG93L2NvcmUvZnJhbWV3b3JrL2Nvc3RfZ3JhcGgu",
"cHJvdG8aJXRlbnNvcmZsb3cvY29yZS9mcmFtZXdvcmsvZ3JhcGgucHJvdG8a",
"KnRlbnNvcmZsb3cvY29yZS9mcmFtZXdvcmsvc3RlcF9zdGF0cy5wcm90bxom",
"dGVuc29yZmxvdy9jb3JlL3Byb3RvYnVmL2NsdXN0ZXIucHJvdG8aMnRlbnNv",
"cmZsb3cvY29yZS9wcm90b2J1Zi9jb29yZGluYXRpb25fY29uZmlnLnByb3Rv",
"GiR0ZW5zb3JmbG93L2NvcmUvcHJvdG9idWYvZGVidWcucHJvdG8aLnRlbnNv",
"cmZsb3cvY29yZS9wcm90b2J1Zi9yZXdyaXRlcl9jb25maWcucHJvdG8i1wYK",
"CkdQVU9wdGlvbnMSJwofcGVyX3Byb2Nlc3NfZ3B1X21lbW9yeV9mcmFjdGlv",
"bhgBIAEoARIUCgxhbGxvd19ncm93dGgYBCABKAgSFgoOYWxsb2NhdG9yX3R5",
"cGUYAiABKAkSHwoXZGVmZXJyZWRfZGVsZXRpb25fYnl0ZXMYAyABKAMSGwoT",
"dmlzaWJsZV9kZXZpY2VfbGlzdBgFIAEoCRIiChpwb2xsaW5nX2FjdGl2ZV9k",
"ZWxheV91c2VjcxgGIAEoBRIkChxwb2xsaW5nX2luYWN0aXZlX2RlbGF5X21z",
"ZWNzGAcgASgFEhwKFGZvcmNlX2dwdV9jb21wYXRpYmxlGAggASgIEjkKDGV4",
"cGVyaW1lbnRhbBgJIAEoCzIjLnRlbnNvcmZsb3cuR1BVT3B0aW9ucy5FeHBl",
"cmltZW50YWwakAQKDEV4cGVyaW1lbnRhbBJLCg92aXJ0dWFsX2RldmljZXMY",
"ASADKAsyMi50ZW5zb3JmbG93LkdQVU9wdGlvbnMuRXhwZXJpbWVudGFsLlZp",
"cnR1YWxEZXZpY2VzEhoKEnVzZV91bmlmaWVkX21lbW9yeRgCIAEoCBIjChtu",
"dW1fZGV2X3RvX2Rldl9jb3B5X3N0cmVhbXMYAyABKAUSHQoVY29sbGVjdGl2",
"ZV9yaW5nX29yZGVyGAQgASgJEh0KFXRpbWVzdGFtcGVkX2FsbG9jYXRvchgF",
"IAEoCBIjChtrZXJuZWxfdHJhY2tlcl9tYXhfaW50ZXJ2YWwYByABKAUSIAoY",
"a2VybmVsX3RyYWNrZXJfbWF4X2J5dGVzGAggASgFEiIKGmtlcm5lbF90cmFj",
"a2VyX21heF9wZW5kaW5nGAkgASgFEicKH2ludGVybmFsX2ZyYWdtZW50YXRp",
"b25fZnJhY3Rpb24YCiABKAESHQoVdXNlX2N1ZGFfbWFsbG9jX2FzeW5jGAsg",
"ASgIEiwKJGRpc2FsbG93X3JldHJ5X29uX2FsbG9jYXRpb25fZmFpbHVyZRgM",
"IAEoCBpTCg5WaXJ0dWFsRGV2aWNlcxIXCg9tZW1vcnlfbGltaXRfbWIYASAD",
"KAISEAoIcHJpb3JpdHkYAiADKAUSFgoOZGV2aWNlX29yZGluYWwYAyADKAUi",
"nQMKEE9wdGltaXplck9wdGlvbnMSKwojZG9fY29tbW9uX3N1YmV4cHJlc3Np",
"b25fZWxpbWluYXRpb24YASABKAgSGwoTZG9fY29uc3RhbnRfZm9sZGluZxgC",
"IAEoCBIkChxtYXhfZm9sZGVkX2NvbnN0YW50X2luX2J5dGVzGAYgASgDEhwK",
"FGRvX2Z1bmN0aW9uX2lubGluaW5nGAQgASgIEjUKCW9wdF9sZXZlbBgDIAEo",
"DjIiLnRlbnNvcmZsb3cuT3B0aW1pemVyT3B0aW9ucy5MZXZlbBJFChBnbG9i",
"YWxfaml0X2xldmVsGAUgASgOMisudGVuc29yZmxvdy5PcHRpbWl6ZXJPcHRp",
"b25zLkdsb2JhbEppdExldmVsEhYKDmNwdV9nbG9iYWxfaml0GAcgASgIIiAK",
"BUxldmVsEgYKAkwxEAASDwoCTDAQ////////////ASJDCg5HbG9iYWxKaXRM",
"ZXZlbBILCgdERUZBVUxUEAASEAoDT0ZGEP///////////wESCAoET05fMRAB",
"EggKBE9OXzIQAiLuAgoMR3JhcGhPcHRpb25zEh4KFmVuYWJsZV9yZWN2X3Nj",
"aGVkdWxpbmcYAiABKAgSNwoRb3B0aW1pemVyX29wdGlvbnMYAyABKAsyHC50",
"ZW5zb3JmbG93Lk9wdGltaXplck9wdGlvbnMSGAoQYnVpbGRfY29zdF9tb2Rl",
"bBgEIAEoAxIeChZidWlsZF9jb3N0X21vZGVsX2FmdGVyGAkgASgDEhQKDGlu",
"ZmVyX3NoYXBlcxgFIAEoCBIaChJwbGFjZV9wcnVuZWRfZ3JhcGgYBiABKAgS",
"IAoYZW5hYmxlX2JmbG9hdDE2X3NlbmRyZWN2GAcgASgIEhUKDXRpbWVsaW5l",
"X3N0ZXAYCCABKAUSMwoPcmV3cml0ZV9vcHRpb25zGAogASgLMhoudGVuc29y",
"Zmxvdy5SZXdyaXRlckNvbmZpZ0oECAEQAlIlc2tpcF9jb21tb25fc3ViZXhw",
"cmVzc2lvbl9lbGltaW5hdGlvbiJBChVUaHJlYWRQb29sT3B0aW9uUHJvdG8S",
"EwoLbnVtX3RocmVhZHMYASABKAUSEwoLZ2xvYmFsX25hbWUYAiABKAki1QEK",
"ClJQQ09wdGlvbnMSJAocdXNlX3JwY19mb3JfaW5wcm9jZXNzX21hc3RlchgB",
"IAEoCBIdChVjb21wcmVzc2lvbl9hbGdvcml0aG0YAiABKAkSGQoRY29tcHJl",
"c3Npb25fbGV2ZWwYAyABKAUSGgoSY2FjaGVfcnBjX3Jlc3BvbnNlGAQgASgI",
"EioKImRpc2FibGVfc2Vzc2lvbl9jb25uZWN0aW9uX3NoYXJpbmcYBSABKAgS",
"HwoXbnVtX2NoYW5uZWxzX3Blcl90YXJnZXQYBiABKAUiMAoPU2Vzc2lvbk1l",
"dGFkYXRhEgwKBG5hbWUYASABKAkSDwoHdmVyc2lvbhgCIAEoAyKuDgoLQ29u",
"ZmlnUHJvdG8SPgoMZGV2aWNlX2NvdW50GAEgAygLMigudGVuc29yZmxvdy5D",
"b25maWdQcm90by5EZXZpY2VDb3VudEVudHJ5EiQKHGludHJhX29wX3BhcmFs",
"bGVsaXNtX3RocmVhZHMYAiABKAUSJAocaW50ZXJfb3BfcGFyYWxsZWxpc21f",
"dGhyZWFkcxgFIAEoBRIfChd1c2VfcGVyX3Nlc3Npb25fdGhyZWFkcxgJIAEo",
"CBJHChxzZXNzaW9uX2ludGVyX29wX3RocmVhZF9wb29sGAwgAygLMiEudGVu",
"c29yZmxvdy5UaHJlYWRQb29sT3B0aW9uUHJvdG8SGAoQcGxhY2VtZW50X3Bl",
"cmlvZBgDIAEoBRIWCg5kZXZpY2VfZmlsdGVycxgEIAMoCRIrCgtncHVfb3B0",
"aW9ucxgGIAEoCzIWLnRlbnNvcmZsb3cuR1BVT3B0aW9ucxIcChRhbGxvd19z",
"b2Z0X3BsYWNlbWVudBgHIAEoCBIcChRsb2dfZGV2aWNlX3BsYWNlbWVudBgI",
"IAEoCBIvCg1ncmFwaF9vcHRpb25zGAogASgLMhgudGVuc29yZmxvdy5HcmFw",
"aE9wdGlvbnMSHwoXb3BlcmF0aW9uX3RpbWVvdXRfaW5fbXMYCyABKAMSKwoL",
"cnBjX29wdGlvbnMYDSABKAsyFi50ZW5zb3JmbG93LlJQQ09wdGlvbnMSKwoL",
"Y2x1c3Rlcl9kZWYYDiABKAsyFi50ZW5zb3JmbG93LkNsdXN0ZXJEZWYSHQoV",
"aXNvbGF0ZV9zZXNzaW9uX3N0YXRlGA8gASgIEigKIHNoYXJlX2NsdXN0ZXJf",
"ZGV2aWNlc19pbl9zZXNzaW9uGBEgASgIEjoKDGV4cGVyaW1lbnRhbBgQIAEo",
"CzIkLnRlbnNvcmZsb3cuQ29uZmlnUHJvdG8uRXhwZXJpbWVudGFsGjIKEERl",
"dmljZUNvdW50RW50cnkSCwoDa2V5GAEgASgJEg0KBXZhbHVlGAIgASgFOgI4",
"ARqoCAoMRXhwZXJpbWVudGFsEh8KF2NvbGxlY3RpdmVfZ3JvdXBfbGVhZGVy",
"GAEgASgJEhUKDWV4ZWN1dG9yX3R5cGUYAyABKAkSGgoScmVjdl9idWZfbWF4",
"X2NodW5rGAQgASgFEhkKEXVzZV9udW1hX2FmZmluaXR5GAUgASgIEjUKLWNv",
"bGxlY3RpdmVfZGV0ZXJtaW5pc3RpY19zZXF1ZW50aWFsX2V4ZWN1dGlvbhgG",
"IAEoCBIXCg9jb2xsZWN0aXZlX25jY2wYByABKAgSNgouc2hhcmVfc2Vzc2lv",
"bl9zdGF0ZV9pbl9jbHVzdGVyc3BlY19wcm9wYWdhdGlvbhgIIAEoCBIfChdk",
"aXNhYmxlX3RocmVhZF9zcGlubmluZxgJIAEoCBIoCiBzaGFyZV9jbHVzdGVy",
"X2RldmljZXNfaW5fc2Vzc2lvbhgKIAEoCBI1ChBzZXNzaW9uX21ldGFkYXRh",
"GAsgASgLMhsudGVuc29yZmxvdy5TZXNzaW9uTWV0YWRhdGESIQoZb3B0aW1p",
"emVfZm9yX3N0YXRpY19ncmFwaBgMIAEoCBIaChJlbmFibGVfbWxpcl9icmlk",
"Z2UYDSABKAgSUwoTbWxpcl9icmlkZ2Vfcm9sbG91dBgRIAEoDjI2LnRlbnNv",
"cmZsb3cuQ29uZmlnUHJvdG8uRXhwZXJpbWVudGFsLk1saXJCcmlkZ2VSb2xs",
"b3V0EiYKHmVuYWJsZV9tbGlyX2dyYXBoX29wdGltaXphdGlvbhgQIAEoCBIn",
"Ch9kaXNhYmxlX291dHB1dF9wYXJ0aXRpb25fZ3JhcGhzGA4gASgIEiMKG3hs",
"YV9mdXNpb25fYXV0b3R1bmVyX3RocmVzaBgPIAEoAxIQCgh1c2VfdGZydBgS",
"IAEoCBInCh9kaXNhYmxlX2Z1bmN0aW9uYWxfb3BzX2xvd2VyaW5nGBUgASgI",
"EicKH3hsYV9wcmVmZXJfc2luZ2xlX2dyYXBoX2NsdXN0ZXIYFiABKAgSQgoT",
"Y29vcmRpbmF0aW9uX2NvbmZpZxgXIAEoCzIlLnRlbnNvcmZsb3cuQ29vcmRp",
"bmF0aW9uU2VydmljZUNvbmZpZyLaAQoRTWxpckJyaWRnZVJvbGxvdXQSIwof",
"TUxJUl9CUklER0VfUk9MTE9VVF9VTlNQRUNJRklFRBAAEh8KG01MSVJfQlJJ",
"REdFX1JPTExPVVRfRU5BQkxFRBABEiAKHE1MSVJfQlJJREdFX1JPTExPVVRf",
"RElTQUJMRUQQAhIpCiVNTElSX0JSSURHRV9ST0xMT1VUX1NBRkVfTU9ERV9F",
"TkFCTEVEEAMSMgouTUxJUl9CUklER0VfUk9MTE9VVF9TQUZFX01PREVfRkFM",
"TEJBQ0tfRU5BQkxFRBAESgQIAhADSgQIExAUSgQIFBAVIuEECgpSdW5PcHRp",
"b25zEjYKC3RyYWNlX2xldmVsGAEgASgOMiEudGVuc29yZmxvdy5SdW5PcHRp",
"b25zLlRyYWNlTGV2ZWwSFQoNdGltZW91dF9pbl9tcxgCIAEoAxIcChRpbnRl",
"cl9vcF90aHJlYWRfcG9vbBgDIAEoBRIfChdvdXRwdXRfcGFydGl0aW9uX2dy",
"YXBocxgFIAEoCBIvCg1kZWJ1Z19vcHRpb25zGAYgASgLMhgudGVuc29yZmxv",
"dy5EZWJ1Z09wdGlvbnMSKgoicmVwb3J0X3RlbnNvcl9hbGxvY2F0aW9uc191",
"cG9uX29vbRgHIAEoCBI5CgxleHBlcmltZW50YWwYCCABKAsyIy50ZW5zb3Jm",
"bG93LlJ1bk9wdGlvbnMuRXhwZXJpbWVudGFsGtIBCgxFeHBlcmltZW50YWwS",
"HAoUY29sbGVjdGl2ZV9ncmFwaF9rZXkYASABKAMSHAoUdXNlX3J1bl9oYW5k",
"bGVyX3Bvb2wYAiABKAgSWwoYcnVuX2hhbmRsZXJfcG9vbF9vcHRpb25zGAMg",
"ASgLMjkudGVuc29yZmxvdy5SdW5PcHRpb25zLkV4cGVyaW1lbnRhbC5SdW5I",
"YW5kbGVyUG9vbE9wdGlvbnMaKQoVUnVuSGFuZGxlclBvb2xPcHRpb25zEhAK",
"CHByaW9yaXR5GAEgASgDIlIKClRyYWNlTGV2ZWwSDAoITk9fVFJBQ0UQABIS",
"Cg5TT0ZUV0FSRV9UUkFDRRABEhIKDkhBUkRXQVJFX1RSQUNFEAISDgoKRlVM",
"TF9UUkFDRRADSgQIBBAFIr4DCgtSdW5NZXRhZGF0YRIpCgpzdGVwX3N0YXRz",
"GAEgASgLMhUudGVuc29yZmxvdy5TdGVwU3RhdHMSLAoKY29zdF9ncmFwaBgC",
"IAEoCzIYLnRlbnNvcmZsb3cuQ29zdEdyYXBoRGVmEi4KEHBhcnRpdGlvbl9n",
"cmFwaHMYAyADKAsyFC50ZW5zb3JmbG93LkdyYXBoRGVmEj8KD2Z1bmN0aW9u",
"X2dyYXBocxgEIAMoCzImLnRlbnNvcmZsb3cuUnVuTWV0YWRhdGEuRnVuY3Rp",
"b25HcmFwaHMSNQoQc2Vzc2lvbl9tZXRhZGF0YRgFIAEoCzIbLnRlbnNvcmZs",
"b3cuU2Vzc2lvbk1ldGFkYXRhGq0BCg5GdW5jdGlvbkdyYXBocxIuChBwYXJ0",
"aXRpb25fZ3JhcGhzGAEgAygLMhQudGVuc29yZmxvdy5HcmFwaERlZhI0ChZw",
"cmVfb3B0aW1pemF0aW9uX2dyYXBoGAIgASgLMhQudGVuc29yZmxvdy5HcmFw",
"aERlZhI1Chdwb3N0X29wdGltaXphdGlvbl9ncmFwaBgDIAEoCzIULnRlbnNv",
"cmZsb3cuR3JhcGhEZWYiOgoQVGVuc29yQ29ubmVjdGlvbhITCgtmcm9tX3Rl",
"bnNvchgBIAEoCRIRCgl0b190ZW5zb3IYAiABKAkisAMKD0NhbGxhYmxlT3B0",
"aW9ucxIMCgRmZWVkGAEgAygJEg0KBWZldGNoGAIgAygJEg4KBnRhcmdldBgD",
"IAMoCRIrCgtydW5fb3B0aW9ucxgEIAEoCzIWLnRlbnNvcmZsb3cuUnVuT3B0",
"aW9ucxI3ChF0ZW5zb3JfY29ubmVjdGlvbhgFIAMoCzIcLnRlbnNvcmZsb3cu",
"VGVuc29yQ29ubmVjdGlvbhJCCgxmZWVkX2RldmljZXMYBiADKAsyLC50ZW5z",
"b3JmbG93LkNhbGxhYmxlT3B0aW9ucy5GZWVkRGV2aWNlc0VudHJ5EkQKDWZl",
"dGNoX2RldmljZXMYByADKAsyLS50ZW5zb3JmbG93LkNhbGxhYmxlT3B0aW9u",
"cy5GZXRjaERldmljZXNFbnRyeRIXCg9mZXRjaF9za2lwX3N5bmMYCCABKAga",
"MgoQRmVlZERldmljZXNFbnRyeRILCgNrZXkYASABKAkSDQoFdmFsdWUYAiAB",
"KAk6AjgBGjMKEUZldGNoRGV2aWNlc0VudHJ5EgsKA2tleRgBIAEoCRINCgV2",
"YWx1ZRgCIAEoCToCOAFChAEKGG9yZy50ZW5zb3JmbG93LmZyYW1ld29ya0IM",
"Q29uZmlnUHJvdG9zUAFaVWdpdGh1Yi5jb20vdGVuc29yZmxvdy90ZW5zb3Jm",
"bG93L3RlbnNvcmZsb3cvZ28vY29yZS9wcm90b2J1Zi9mb3JfY29yZV9wcm90",
"b3NfZ29fcHJvdG/4AQFiBnByb3RvMw=="));
descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData,
new pbr::FileDescriptor[] { global::Tensorflow.CostGraphReflection.Descriptor, global::Tensorflow.GraphReflection.Descriptor, global::Tensorflow.StepStatsReflection.Descriptor, global::Tensorflow.ClusterReflection.Descriptor, global::Tensorflow.CoordinationConfigReflection.Descriptor, global::Tensorflow.DebugReflection.Descriptor, global::Tensorflow.RewriterConfigReflection.Descriptor, },
new pbr::GeneratedClrTypeInfo(null, null, new pbr::GeneratedClrTypeInfo[] {
new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GPUOptions), global::Tensorflow.GPUOptions.Parser, new[]{ "PerProcessGpuMemoryFraction", "AllowGrowth", "AllocatorType", "DeferredDeletionBytes", "VisibleDeviceList", "PollingActiveDelayUsecs", "PollingInactiveDelayMsecs", "ForceGpuCompatible", "Experimental" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GPUOptions.Types.Experimental), global::Tensorflow.GPUOptions.Types.Experimental.Parser, new[]{ "VirtualDevices", "UseUnifiedMemory", "NumDevToDevCopyStreams", "CollectiveRingOrder", "TimestampedAllocator", "KernelTrackerMaxInterval", "KernelTrackerMaxBytes", "KernelTrackerMaxPending", "InternalFragmentationFraction", "UseCudaMallocAsync", "DisallowRetryOnAllocationFailure" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GPUOptions.Types.Experimental.Types.VirtualDevices), global::Tensorflow.GPUOptions.Types.Experimental.Types.VirtualDevices.Parser, new[]{ "MemoryLimitMb", "Priority", "DeviceOrdinal" }, null, null, null, null)})}),
new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.OptimizerOptions), global::Tensorflow.OptimizerOptions.Parser, new[]{ "DoCommonSubexpressionElimination", "DoConstantFolding", "MaxFoldedConstantInBytes", "DoFunctionInlining", "OptLevel", "GlobalJitLevel", "CpuGlobalJit" }, null, new[]{ typeof(global::Tensorflow.OptimizerOptions.Types.Level), typeof(global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel) }, null, null),
new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.GraphOptions), global::Tensorflow.GraphOptions.Parser, new[]{ "EnableRecvScheduling", "OptimizerOptions", "BuildCostModel", "BuildCostModelAfter", "InferShapes", "PlacePrunedGraph", "EnableBfloat16Sendrecv", "TimelineStep", "RewriteOptions" }, null, null, null, null),
new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ThreadPoolOptionProto), global::Tensorflow.ThreadPoolOptionProto.Parser, new[]{ "NumThreads", "GlobalName" }, null, null, null, null),
new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RPCOptions), global::Tensorflow.RPCOptions.Parser, new[]{ "UseRpcForInprocessMaster", "CompressionAlgorithm", "CompressionLevel", "CacheRpcResponse", "DisableSessionConnectionSharing", "NumChannelsPerTarget" }, null, null, null, null),
new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.SessionMetadata), global::Tensorflow.SessionMetadata.Parser, new[]{ "Name", "Version" }, null, null, null, null),
new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ConfigProto), global::Tensorflow.ConfigProto.Parser, new[]{ "DeviceCount", "IntraOpParallelismThreads", "InterOpParallelismThreads", "UsePerSessionThreads", "SessionInterOpThreadPool", "PlacementPeriod", "DeviceFilters", "GpuOptions", "AllowSoftPlacement", "LogDevicePlacement", "GraphOptions", "OperationTimeoutInMs", "RpcOptions", "ClusterDef", "IsolateSessionState", "ShareClusterDevicesInSession", "Experimental" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { null, new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.ConfigProto.Types.Experimental), global::Tensorflow.ConfigProto.Types.Experimental.Parser, new[]{ "CollectiveGroupLeader", "ExecutorType", "RecvBufMaxChunk", "UseNumaAffinity", "CollectiveDeterministicSequentialExecution", "CollectiveNccl", "ShareSessionStateInClusterspecPropagation", "DisableThreadSpinning", "ShareClusterDevicesInSession", "SessionMetadata", "OptimizeForStaticGraph", "EnableMlirBridge", "MlirBridgeRollout", "EnableMlirGraphOptimization", "DisableOutputPartitionGraphs", "XlaFusionAutotunerThresh", "UseTfrt", "DisableFunctionalOpsLowering", "XlaPreferSingleGraphCluster", "CoordinationConfig" }, null, new[]{ typeof(global::Tensorflow.ConfigProto.Types.Experimental.Types.MlirBridgeRollout) }, null, null)}),
new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RunOptions), global::Tensorflow.RunOptions.Parser, new[]{ "TraceLevel", "TimeoutInMs", "InterOpThreadPool", "OutputPartitionGraphs", "DebugOptions", "ReportTensorAllocationsUponOom", "Experimental" }, null, new[]{ typeof(global::Tensorflow.RunOptions.Types.TraceLevel) }, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RunOptions.Types.Experimental), global::Tensorflow.RunOptions.Types.Experimental.Parser, new[]{ "CollectiveGraphKey", "UseRunHandlerPool", "RunHandlerPoolOptions" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RunOptions.Types.Experimental.Types.RunHandlerPoolOptions), global::Tensorflow.RunOptions.Types.Experimental.Types.RunHandlerPoolOptions.Parser, new[]{ "Priority" }, null, null, null, null)})}),
new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RunMetadata), global::Tensorflow.RunMetadata.Parser, new[]{ "StepStats", "CostGraph", "PartitionGraphs", "FunctionGraphs", "SessionMetadata" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.RunMetadata.Types.FunctionGraphs), global::Tensorflow.RunMetadata.Types.FunctionGraphs.Parser, new[]{ "PartitionGraphs", "PreOptimizationGraph", "PostOptimizationGraph" }, null, null, null, null)}),
new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.TensorConnection), global::Tensorflow.TensorConnection.Parser, new[]{ "FromTensor", "ToTensor" }, null, null, null, null),
new pbr::GeneratedClrTypeInfo(typeof(global::Tensorflow.CallableOptions), global::Tensorflow.CallableOptions.Parser, new[]{ "Feed", "Fetch", "Target", "RunOptions", "TensorConnection", "FeedDevices", "FetchDevices", "FetchSkipSync" }, null, null, null, new pbr::GeneratedClrTypeInfo[] { null, null, })
}));
}
#endregion
}
#region Messages
public sealed partial class GPUOptions : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GPUOptions());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[0]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public GPUOptions() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public GPUOptions(GPUOptions other) : this() {
perProcessGpuMemoryFraction_ = other.perProcessGpuMemoryFraction_;
allowGrowth_ = other.allowGrowth_;
allocatorType_ = other.allocatorType_;
deferredDeletionBytes_ = other.deferredDeletionBytes_;
visibleDeviceList_ = other.visibleDeviceList_;
pollingActiveDelayUsecs_ = other.pollingActiveDelayUsecs_;
pollingInactiveDelayMsecs_ = other.pollingInactiveDelayMsecs_;
forceGpuCompatible_ = other.forceGpuCompatible_;
experimental_ = other.experimental_ != null ? other.experimental_.Clone() : null;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public GPUOptions Clone() {
return new GPUOptions(this);
}
/// Field number for the "per_process_gpu_memory_fraction" field.
public const int PerProcessGpuMemoryFractionFieldNumber = 1;
private double perProcessGpuMemoryFraction_;
///
/// Fraction of the available GPU memory to allocate for each process.
/// 1 means to allocate all of the GPU memory, 0.5 means the process
/// allocates up to ~50% of the available GPU memory.
///
/// GPU memory is pre-allocated unless the allow_growth option is enabled.
///
/// If greater than 1.0, uses CUDA unified memory to potentially oversubscribe
/// the amount of memory available on the GPU device by using host memory as a
/// swap space. Accessing memory not available on the device will be
/// significantly slower as that would require memory transfer between the host
/// and the device. Options to reduce the memory requirement should be
/// considered before enabling this option as this may come with a negative
/// performance impact. Oversubscription using the unified memory requires
/// Pascal class or newer GPUs and it is currently only supported on the Linux
/// operating system. See
/// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-requirements
/// for the detailed requirements.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public double PerProcessGpuMemoryFraction {
get { return perProcessGpuMemoryFraction_; }
set {
perProcessGpuMemoryFraction_ = value;
}
}
/// Field number for the "allow_growth" field.
public const int AllowGrowthFieldNumber = 4;
private bool allowGrowth_;
///
/// If true, the allocator does not pre-allocate the entire specified
/// GPU memory region, instead starting small and growing as needed.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool AllowGrowth {
get { return allowGrowth_; }
set {
allowGrowth_ = value;
}
}
/// Field number for the "allocator_type" field.
public const int AllocatorTypeFieldNumber = 2;
private string allocatorType_ = "";
///
/// The type of GPU allocation strategy to use.
///
/// Allowed values:
/// "": The empty string (default) uses a system-chosen default
/// which may change over time.
///
/// "BFC": A "Best-fit with coalescing" algorithm, simplified from a
/// version of dlmalloc.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public string AllocatorType {
get { return allocatorType_; }
set {
allocatorType_ = pb::ProtoPreconditions.CheckNotNull(value, "value");
}
}
/// Field number for the "deferred_deletion_bytes" field.
public const int DeferredDeletionBytesFieldNumber = 3;
private long deferredDeletionBytes_;
///
/// Delay deletion of up to this many bytes to reduce the number of
/// interactions with gpu driver code. If 0, the system chooses
/// a reasonable default (several MBs).
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public long DeferredDeletionBytes {
get { return deferredDeletionBytes_; }
set {
deferredDeletionBytes_ = value;
}
}
/// Field number for the "visible_device_list" field.
public const int VisibleDeviceListFieldNumber = 5;
private string visibleDeviceList_ = "";
///
/// A comma-separated list of GPU ids that determines the 'visible'
/// to 'virtual' mapping of GPU devices. For example, if TensorFlow
/// can see 8 GPU devices in the process, and one wanted to map
/// visible GPU devices 5 and 3 as "/device:GPU:0", and "/device:GPU:1",
/// then one would specify this field as "5,3". This field is similar in
/// spirit to the CUDA_VISIBLE_DEVICES environment variable, except
/// it applies to the visible GPU devices in the process.
///
/// NOTE:
/// 1. The GPU driver provides the process with the visible GPUs
/// in an order which is not guaranteed to have any correlation to
/// the *physical* GPU id in the machine. This field is used for
/// remapping "visible" to "virtual", which means this operates only
/// after the process starts. Users are required to use vendor
/// specific mechanisms (e.g., CUDA_VISIBLE_DEVICES) to control the
/// physical to visible device mapping prior to invoking TensorFlow.
/// 2. In the code, the ids in this list are also called "platform GPU id"s,
/// and the 'virtual' ids of GPU devices (i.e. the ids in the device
/// name "/device:GPU:<id>") are also called "TF GPU id"s. Please
/// refer to third_party/tensorflow/core/common_runtime/gpu/gpu_id.h
/// for more information.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public string VisibleDeviceList {
get { return visibleDeviceList_; }
set {
visibleDeviceList_ = pb::ProtoPreconditions.CheckNotNull(value, "value");
}
}
/// Field number for the "polling_active_delay_usecs" field.
public const int PollingActiveDelayUsecsFieldNumber = 6;
private int pollingActiveDelayUsecs_;
///
/// In the event polling loop sleep this many microseconds between
/// PollEvents calls, when the queue is not empty. If value is not
/// set or set to 0, gets set to a non-zero default.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int PollingActiveDelayUsecs {
get { return pollingActiveDelayUsecs_; }
set {
pollingActiveDelayUsecs_ = value;
}
}
/// Field number for the "polling_inactive_delay_msecs" field.
public const int PollingInactiveDelayMsecsFieldNumber = 7;
private int pollingInactiveDelayMsecs_;
///
/// This field is deprecated and ignored.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int PollingInactiveDelayMsecs {
get { return pollingInactiveDelayMsecs_; }
set {
pollingInactiveDelayMsecs_ = value;
}
}
/// Field number for the "force_gpu_compatible" field.
public const int ForceGpuCompatibleFieldNumber = 8;
private bool forceGpuCompatible_;
///
/// Force all tensors to be gpu_compatible. On a GPU-enabled TensorFlow,
/// enabling this option forces all CPU tensors to be allocated with Cuda
/// pinned memory. Normally, TensorFlow will infer which tensors should be
/// allocated as the pinned memory. But in case where the inference is
/// incomplete, this option can significantly speed up the cross-device memory
/// copy performance as long as it fits the memory.
/// Note that this option is not something that should be
/// enabled by default for unknown or very large models, since all Cuda pinned
/// memory is unpageable, having too much pinned memory might negatively impact
/// the overall host system performance.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool ForceGpuCompatible {
get { return forceGpuCompatible_; }
set {
forceGpuCompatible_ = value;
}
}
/// Field number for the "experimental" field.
public const int ExperimentalFieldNumber = 9;
private global::Tensorflow.GPUOptions.Types.Experimental experimental_;
///
/// Everything inside experimental is subject to change and is not subject
/// to API stability guarantees in
/// https://www.tensorflow.org/guide/version_compat.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.GPUOptions.Types.Experimental Experimental {
get { return experimental_; }
set {
experimental_ = value;
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as GPUOptions);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(GPUOptions other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(PerProcessGpuMemoryFraction, other.PerProcessGpuMemoryFraction)) return false;
if (AllowGrowth != other.AllowGrowth) return false;
if (AllocatorType != other.AllocatorType) return false;
if (DeferredDeletionBytes != other.DeferredDeletionBytes) return false;
if (VisibleDeviceList != other.VisibleDeviceList) return false;
if (PollingActiveDelayUsecs != other.PollingActiveDelayUsecs) return false;
if (PollingInactiveDelayMsecs != other.PollingInactiveDelayMsecs) return false;
if (ForceGpuCompatible != other.ForceGpuCompatible) return false;
if (!object.Equals(Experimental, other.Experimental)) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
if (PerProcessGpuMemoryFraction != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(PerProcessGpuMemoryFraction);
if (AllowGrowth != false) hash ^= AllowGrowth.GetHashCode();
if (AllocatorType.Length != 0) hash ^= AllocatorType.GetHashCode();
if (DeferredDeletionBytes != 0L) hash ^= DeferredDeletionBytes.GetHashCode();
if (VisibleDeviceList.Length != 0) hash ^= VisibleDeviceList.GetHashCode();
if (PollingActiveDelayUsecs != 0) hash ^= PollingActiveDelayUsecs.GetHashCode();
if (PollingInactiveDelayMsecs != 0) hash ^= PollingInactiveDelayMsecs.GetHashCode();
if (ForceGpuCompatible != false) hash ^= ForceGpuCompatible.GetHashCode();
if (experimental_ != null) hash ^= Experimental.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
if (PerProcessGpuMemoryFraction != 0D) {
output.WriteRawTag(9);
output.WriteDouble(PerProcessGpuMemoryFraction);
}
if (AllocatorType.Length != 0) {
output.WriteRawTag(18);
output.WriteString(AllocatorType);
}
if (DeferredDeletionBytes != 0L) {
output.WriteRawTag(24);
output.WriteInt64(DeferredDeletionBytes);
}
if (AllowGrowth != false) {
output.WriteRawTag(32);
output.WriteBool(AllowGrowth);
}
if (VisibleDeviceList.Length != 0) {
output.WriteRawTag(42);
output.WriteString(VisibleDeviceList);
}
if (PollingActiveDelayUsecs != 0) {
output.WriteRawTag(48);
output.WriteInt32(PollingActiveDelayUsecs);
}
if (PollingInactiveDelayMsecs != 0) {
output.WriteRawTag(56);
output.WriteInt32(PollingInactiveDelayMsecs);
}
if (ForceGpuCompatible != false) {
output.WriteRawTag(64);
output.WriteBool(ForceGpuCompatible);
}
if (experimental_ != null) {
output.WriteRawTag(74);
output.WriteMessage(Experimental);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
if (PerProcessGpuMemoryFraction != 0D) {
output.WriteRawTag(9);
output.WriteDouble(PerProcessGpuMemoryFraction);
}
if (AllocatorType.Length != 0) {
output.WriteRawTag(18);
output.WriteString(AllocatorType);
}
if (DeferredDeletionBytes != 0L) {
output.WriteRawTag(24);
output.WriteInt64(DeferredDeletionBytes);
}
if (AllowGrowth != false) {
output.WriteRawTag(32);
output.WriteBool(AllowGrowth);
}
if (VisibleDeviceList.Length != 0) {
output.WriteRawTag(42);
output.WriteString(VisibleDeviceList);
}
if (PollingActiveDelayUsecs != 0) {
output.WriteRawTag(48);
output.WriteInt32(PollingActiveDelayUsecs);
}
if (PollingInactiveDelayMsecs != 0) {
output.WriteRawTag(56);
output.WriteInt32(PollingInactiveDelayMsecs);
}
if (ForceGpuCompatible != false) {
output.WriteRawTag(64);
output.WriteBool(ForceGpuCompatible);
}
if (experimental_ != null) {
output.WriteRawTag(74);
output.WriteMessage(Experimental);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
if (PerProcessGpuMemoryFraction != 0D) {
size += 1 + 8;
}
if (AllowGrowth != false) {
size += 1 + 1;
}
if (AllocatorType.Length != 0) {
size += 1 + pb::CodedOutputStream.ComputeStringSize(AllocatorType);
}
if (DeferredDeletionBytes != 0L) {
size += 1 + pb::CodedOutputStream.ComputeInt64Size(DeferredDeletionBytes);
}
if (VisibleDeviceList.Length != 0) {
size += 1 + pb::CodedOutputStream.ComputeStringSize(VisibleDeviceList);
}
if (PollingActiveDelayUsecs != 0) {
size += 1 + pb::CodedOutputStream.ComputeInt32Size(PollingActiveDelayUsecs);
}
if (PollingInactiveDelayMsecs != 0) {
size += 1 + pb::CodedOutputStream.ComputeInt32Size(PollingInactiveDelayMsecs);
}
if (ForceGpuCompatible != false) {
size += 1 + 1;
}
if (experimental_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(Experimental);
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(GPUOptions other) {
if (other == null) {
return;
}
if (other.PerProcessGpuMemoryFraction != 0D) {
PerProcessGpuMemoryFraction = other.PerProcessGpuMemoryFraction;
}
if (other.AllowGrowth != false) {
AllowGrowth = other.AllowGrowth;
}
if (other.AllocatorType.Length != 0) {
AllocatorType = other.AllocatorType;
}
if (other.DeferredDeletionBytes != 0L) {
DeferredDeletionBytes = other.DeferredDeletionBytes;
}
if (other.VisibleDeviceList.Length != 0) {
VisibleDeviceList = other.VisibleDeviceList;
}
if (other.PollingActiveDelayUsecs != 0) {
PollingActiveDelayUsecs = other.PollingActiveDelayUsecs;
}
if (other.PollingInactiveDelayMsecs != 0) {
PollingInactiveDelayMsecs = other.PollingInactiveDelayMsecs;
}
if (other.ForceGpuCompatible != false) {
ForceGpuCompatible = other.ForceGpuCompatible;
}
if (other.experimental_ != null) {
if (experimental_ == null) {
Experimental = new global::Tensorflow.GPUOptions.Types.Experimental();
}
Experimental.MergeFrom(other.Experimental);
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 9: {
PerProcessGpuMemoryFraction = input.ReadDouble();
break;
}
case 18: {
AllocatorType = input.ReadString();
break;
}
case 24: {
DeferredDeletionBytes = input.ReadInt64();
break;
}
case 32: {
AllowGrowth = input.ReadBool();
break;
}
case 42: {
VisibleDeviceList = input.ReadString();
break;
}
case 48: {
PollingActiveDelayUsecs = input.ReadInt32();
break;
}
case 56: {
PollingInactiveDelayMsecs = input.ReadInt32();
break;
}
case 64: {
ForceGpuCompatible = input.ReadBool();
break;
}
case 74: {
if (experimental_ == null) {
Experimental = new global::Tensorflow.GPUOptions.Types.Experimental();
}
input.ReadMessage(Experimental);
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 9: {
PerProcessGpuMemoryFraction = input.ReadDouble();
break;
}
case 18: {
AllocatorType = input.ReadString();
break;
}
case 24: {
DeferredDeletionBytes = input.ReadInt64();
break;
}
case 32: {
AllowGrowth = input.ReadBool();
break;
}
case 42: {
VisibleDeviceList = input.ReadString();
break;
}
case 48: {
PollingActiveDelayUsecs = input.ReadInt32();
break;
}
case 56: {
PollingInactiveDelayMsecs = input.ReadInt32();
break;
}
case 64: {
ForceGpuCompatible = input.ReadBool();
break;
}
case 74: {
if (experimental_ == null) {
Experimental = new global::Tensorflow.GPUOptions.Types.Experimental();
}
input.ReadMessage(Experimental);
break;
}
}
}
}
#endif
#region Nested types
/// Container for nested types declared in the GPUOptions message type.
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static partial class Types {
public sealed partial class Experimental : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Experimental());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.GPUOptions.Descriptor.NestedTypes[0]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public Experimental() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public Experimental(Experimental other) : this() {
virtualDevices_ = other.virtualDevices_.Clone();
useUnifiedMemory_ = other.useUnifiedMemory_;
numDevToDevCopyStreams_ = other.numDevToDevCopyStreams_;
collectiveRingOrder_ = other.collectiveRingOrder_;
timestampedAllocator_ = other.timestampedAllocator_;
kernelTrackerMaxInterval_ = other.kernelTrackerMaxInterval_;
kernelTrackerMaxBytes_ = other.kernelTrackerMaxBytes_;
kernelTrackerMaxPending_ = other.kernelTrackerMaxPending_;
internalFragmentationFraction_ = other.internalFragmentationFraction_;
useCudaMallocAsync_ = other.useCudaMallocAsync_;
disallowRetryOnAllocationFailure_ = other.disallowRetryOnAllocationFailure_;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public Experimental Clone() {
return new Experimental(this);
}
/// Field number for the "virtual_devices" field.
public const int VirtualDevicesFieldNumber = 1;
private static readonly pb::FieldCodec _repeated_virtualDevices_codec
= pb::FieldCodec.ForMessage(10, global::Tensorflow.GPUOptions.Types.Experimental.Types.VirtualDevices.Parser);
private readonly pbc::RepeatedField virtualDevices_ = new pbc::RepeatedField();
///
/// The multi virtual device settings. If empty (not set), it will create
/// single virtual device on each visible GPU, according to the settings
/// in "visible_device_list" above. Otherwise, the number of elements in the
/// list must be the same as the number of visible GPUs (after
/// "visible_device_list" filtering if it is set), and the string represented
/// device names (e.g. /device:GPU:<id>) will refer to the virtual
/// devices and have the <id> field assigned sequentially starting from 0,
/// according to the order of the virtual devices determined by
/// device_ordinal and the location in the virtual device list.
///
/// For example,
/// visible_device_list = "1,0"
/// virtual_devices { memory_limit: 1GB memory_limit: 2GB }
/// virtual_devices { memory_limit: 3GB memory_limit: 4GB }
/// will create 4 virtual devices as:
/// /device:GPU:0 -> visible GPU 1 with 1GB memory
/// /device:GPU:1 -> visible GPU 1 with 2GB memory
/// /device:GPU:2 -> visible GPU 0 with 3GB memory
/// /device:GPU:3 -> visible GPU 0 with 4GB memory
///
/// but
/// visible_device_list = "1,0"
/// virtual_devices { memory_limit: 1GB memory_limit: 2GB
/// device_ordinal: 10 device_ordinal: 20}
/// virtual_devices { memory_limit: 3GB memory_limit: 4GB
/// device_ordinal: 10 device_ordinal: 20}
/// will create 4 virtual devices as:
/// /device:GPU:0 -> visible GPU 1 with 1GB memory (ordinal 10)
/// /device:GPU:1 -> visible GPU 0 with 3GB memory (ordinal 10)
/// /device:GPU:2 -> visible GPU 1 with 2GB memory (ordinal 20)
/// /device:GPU:3 -> visible GPU 0 with 4GB memory (ordinal 20)
///
/// NOTE:
/// 1. It's invalid to set both this and "per_process_gpu_memory_fraction"
/// at the same time.
/// 2. Currently this setting is per-process, not per-session. Using
/// different settings in different sessions within same process will
/// result in undefined behavior.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public pbc::RepeatedField VirtualDevices {
get { return virtualDevices_; }
}
/// Field number for the "use_unified_memory" field.
public const int UseUnifiedMemoryFieldNumber = 2;
private bool useUnifiedMemory_;
///
/// If true, uses CUDA unified memory for memory allocations. If
/// per_process_gpu_memory_fraction option is greater than 1.0, then unified
/// memory is used regardless of the value for this field. See comments for
/// per_process_gpu_memory_fraction field for more details and requirements
/// of the unified memory. This option is useful to oversubscribe memory if
/// multiple processes are sharing a single GPU while individually using less
/// than 1.0 per process memory fraction.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool UseUnifiedMemory {
get { return useUnifiedMemory_; }
set {
useUnifiedMemory_ = value;
}
}
/// Field number for the "num_dev_to_dev_copy_streams" field.
public const int NumDevToDevCopyStreamsFieldNumber = 3;
private int numDevToDevCopyStreams_;
///
/// If > 1, the number of device-to-device copy streams to create
/// for each GPUDevice. Default value is 0, which is automatically
/// converted to 1.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int NumDevToDevCopyStreams {
get { return numDevToDevCopyStreams_; }
set {
numDevToDevCopyStreams_ = value;
}
}
/// Field number for the "collective_ring_order" field.
public const int CollectiveRingOrderFieldNumber = 4;
private string collectiveRingOrder_ = "";
///
/// If non-empty, defines a good GPU ring order on a single worker based on
/// device interconnect. This assumes that all workers have the same GPU
/// topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4".
/// This ring order is used by the RingReducer implementation of
/// CollectiveReduce, and serves as an override to automatic ring order
/// generation in OrderTaskDeviceMap() during CollectiveParam resolution.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public string CollectiveRingOrder {
get { return collectiveRingOrder_; }
set {
collectiveRingOrder_ = pb::ProtoPreconditions.CheckNotNull(value, "value");
}
}
/// Field number for the "timestamped_allocator" field.
public const int TimestampedAllocatorFieldNumber = 5;
private bool timestampedAllocator_;
///
/// If true then extra work is done by GPUDevice and GPUBFCAllocator to
/// keep track of when GPU memory is freed and when kernels actually
/// complete so that we can know when a nominally free memory chunk
/// is really not subject to pending use.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool TimestampedAllocator {
get { return timestampedAllocator_; }
set {
timestampedAllocator_ = value;
}
}
/// Field number for the "kernel_tracker_max_interval" field.
public const int KernelTrackerMaxIntervalFieldNumber = 7;
private int kernelTrackerMaxInterval_;
///
/// Parameters for GPUKernelTracker. By default no kernel tracking is done.
/// Note that timestamped_allocator is only effective if some tracking is
/// specified.
///
/// If kernel_tracker_max_interval = n > 0, then a tracking event
/// is inserted after every n kernels without an event.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int KernelTrackerMaxInterval {
get { return kernelTrackerMaxInterval_; }
set {
kernelTrackerMaxInterval_ = value;
}
}
/// Field number for the "kernel_tracker_max_bytes" field.
public const int KernelTrackerMaxBytesFieldNumber = 8;
private int kernelTrackerMaxBytes_;
///
/// If kernel_tracker_max_bytes = n > 0, then a tracking event is
/// inserted after every series of kernels allocating a sum of
/// memory >= n. If one kernel allocates b * n bytes, then one
/// event will be inserted after it, but it will count as b against
/// the pending limit.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int KernelTrackerMaxBytes {
get { return kernelTrackerMaxBytes_; }
set {
kernelTrackerMaxBytes_ = value;
}
}
/// Field number for the "kernel_tracker_max_pending" field.
public const int KernelTrackerMaxPendingFieldNumber = 9;
private int kernelTrackerMaxPending_;
///
/// If kernel_tracker_max_pending > 0 then no more than this many
/// tracking events can be outstanding at a time. An attempt to
/// launch an additional kernel will stall until an event
/// completes.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int KernelTrackerMaxPending {
get { return kernelTrackerMaxPending_; }
set {
kernelTrackerMaxPending_ = value;
}
}
/// Field number for the "internal_fragmentation_fraction" field.
public const int InternalFragmentationFractionFieldNumber = 10;
private double internalFragmentationFraction_;
///
/// BFC Allocator can return an allocated chunk of memory upto 2x the
/// requested size. For virtual devices with tight memory constraints, and
/// proportionately large allocation requests, this can lead to a significant
/// reduction in available memory. The threshold below controls when a chunk
/// should be split if the chunk size exceeds requested memory size. It is
/// expressed as a fraction of total available memory for the tf device. For
/// example setting it to 0.05 would imply a chunk needs to be split if its
/// size exceeds the requested memory by 5% of the total virtual device/gpu
/// memory size.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public double InternalFragmentationFraction {
get { return internalFragmentationFraction_; }
set {
internalFragmentationFraction_ = value;
}
}
/// Field number for the "use_cuda_malloc_async" field.
public const int UseCudaMallocAsyncFieldNumber = 11;
private bool useCudaMallocAsync_;
///
/// When true, use CUDA cudaMallocAsync API instead of TF gpu allocator.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool UseCudaMallocAsync {
get { return useCudaMallocAsync_; }
set {
useCudaMallocAsync_ = value;
}
}
/// Field number for the "disallow_retry_on_allocation_failure" field.
public const int DisallowRetryOnAllocationFailureFieldNumber = 12;
private bool disallowRetryOnAllocationFailure_;
///
/// By default, BFCAllocator may sleep when it runs out of memory, in the
/// hopes that another thread will free up memory in the meantime. Setting
/// this to true disables the sleep; instead we'll OOM immediately.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool DisallowRetryOnAllocationFailure {
get { return disallowRetryOnAllocationFailure_; }
set {
disallowRetryOnAllocationFailure_ = value;
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as Experimental);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(Experimental other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if(!virtualDevices_.Equals(other.virtualDevices_)) return false;
if (UseUnifiedMemory != other.UseUnifiedMemory) return false;
if (NumDevToDevCopyStreams != other.NumDevToDevCopyStreams) return false;
if (CollectiveRingOrder != other.CollectiveRingOrder) return false;
if (TimestampedAllocator != other.TimestampedAllocator) return false;
if (KernelTrackerMaxInterval != other.KernelTrackerMaxInterval) return false;
if (KernelTrackerMaxBytes != other.KernelTrackerMaxBytes) return false;
if (KernelTrackerMaxPending != other.KernelTrackerMaxPending) return false;
if (!pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.Equals(InternalFragmentationFraction, other.InternalFragmentationFraction)) return false;
if (UseCudaMallocAsync != other.UseCudaMallocAsync) return false;
if (DisallowRetryOnAllocationFailure != other.DisallowRetryOnAllocationFailure) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
hash ^= virtualDevices_.GetHashCode();
if (UseUnifiedMemory != false) hash ^= UseUnifiedMemory.GetHashCode();
if (NumDevToDevCopyStreams != 0) hash ^= NumDevToDevCopyStreams.GetHashCode();
if (CollectiveRingOrder.Length != 0) hash ^= CollectiveRingOrder.GetHashCode();
if (TimestampedAllocator != false) hash ^= TimestampedAllocator.GetHashCode();
if (KernelTrackerMaxInterval != 0) hash ^= KernelTrackerMaxInterval.GetHashCode();
if (KernelTrackerMaxBytes != 0) hash ^= KernelTrackerMaxBytes.GetHashCode();
if (KernelTrackerMaxPending != 0) hash ^= KernelTrackerMaxPending.GetHashCode();
if (InternalFragmentationFraction != 0D) hash ^= pbc::ProtobufEqualityComparers.BitwiseDoubleEqualityComparer.GetHashCode(InternalFragmentationFraction);
if (UseCudaMallocAsync != false) hash ^= UseCudaMallocAsync.GetHashCode();
if (DisallowRetryOnAllocationFailure != false) hash ^= DisallowRetryOnAllocationFailure.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
virtualDevices_.WriteTo(output, _repeated_virtualDevices_codec);
if (UseUnifiedMemory != false) {
output.WriteRawTag(16);
output.WriteBool(UseUnifiedMemory);
}
if (NumDevToDevCopyStreams != 0) {
output.WriteRawTag(24);
output.WriteInt32(NumDevToDevCopyStreams);
}
if (CollectiveRingOrder.Length != 0) {
output.WriteRawTag(34);
output.WriteString(CollectiveRingOrder);
}
if (TimestampedAllocator != false) {
output.WriteRawTag(40);
output.WriteBool(TimestampedAllocator);
}
if (KernelTrackerMaxInterval != 0) {
output.WriteRawTag(56);
output.WriteInt32(KernelTrackerMaxInterval);
}
if (KernelTrackerMaxBytes != 0) {
output.WriteRawTag(64);
output.WriteInt32(KernelTrackerMaxBytes);
}
if (KernelTrackerMaxPending != 0) {
output.WriteRawTag(72);
output.WriteInt32(KernelTrackerMaxPending);
}
if (InternalFragmentationFraction != 0D) {
output.WriteRawTag(81);
output.WriteDouble(InternalFragmentationFraction);
}
if (UseCudaMallocAsync != false) {
output.WriteRawTag(88);
output.WriteBool(UseCudaMallocAsync);
}
if (DisallowRetryOnAllocationFailure != false) {
output.WriteRawTag(96);
output.WriteBool(DisallowRetryOnAllocationFailure);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
virtualDevices_.WriteTo(ref output, _repeated_virtualDevices_codec);
if (UseUnifiedMemory != false) {
output.WriteRawTag(16);
output.WriteBool(UseUnifiedMemory);
}
if (NumDevToDevCopyStreams != 0) {
output.WriteRawTag(24);
output.WriteInt32(NumDevToDevCopyStreams);
}
if (CollectiveRingOrder.Length != 0) {
output.WriteRawTag(34);
output.WriteString(CollectiveRingOrder);
}
if (TimestampedAllocator != false) {
output.WriteRawTag(40);
output.WriteBool(TimestampedAllocator);
}
if (KernelTrackerMaxInterval != 0) {
output.WriteRawTag(56);
output.WriteInt32(KernelTrackerMaxInterval);
}
if (KernelTrackerMaxBytes != 0) {
output.WriteRawTag(64);
output.WriteInt32(KernelTrackerMaxBytes);
}
if (KernelTrackerMaxPending != 0) {
output.WriteRawTag(72);
output.WriteInt32(KernelTrackerMaxPending);
}
if (InternalFragmentationFraction != 0D) {
output.WriteRawTag(81);
output.WriteDouble(InternalFragmentationFraction);
}
if (UseCudaMallocAsync != false) {
output.WriteRawTag(88);
output.WriteBool(UseCudaMallocAsync);
}
if (DisallowRetryOnAllocationFailure != false) {
output.WriteRawTag(96);
output.WriteBool(DisallowRetryOnAllocationFailure);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
size += virtualDevices_.CalculateSize(_repeated_virtualDevices_codec);
if (UseUnifiedMemory != false) {
size += 1 + 1;
}
if (NumDevToDevCopyStreams != 0) {
size += 1 + pb::CodedOutputStream.ComputeInt32Size(NumDevToDevCopyStreams);
}
if (CollectiveRingOrder.Length != 0) {
size += 1 + pb::CodedOutputStream.ComputeStringSize(CollectiveRingOrder);
}
if (TimestampedAllocator != false) {
size += 1 + 1;
}
if (KernelTrackerMaxInterval != 0) {
size += 1 + pb::CodedOutputStream.ComputeInt32Size(KernelTrackerMaxInterval);
}
if (KernelTrackerMaxBytes != 0) {
size += 1 + pb::CodedOutputStream.ComputeInt32Size(KernelTrackerMaxBytes);
}
if (KernelTrackerMaxPending != 0) {
size += 1 + pb::CodedOutputStream.ComputeInt32Size(KernelTrackerMaxPending);
}
if (InternalFragmentationFraction != 0D) {
size += 1 + 8;
}
if (UseCudaMallocAsync != false) {
size += 1 + 1;
}
if (DisallowRetryOnAllocationFailure != false) {
size += 1 + 1;
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(Experimental other) {
if (other == null) {
return;
}
virtualDevices_.Add(other.virtualDevices_);
if (other.UseUnifiedMemory != false) {
UseUnifiedMemory = other.UseUnifiedMemory;
}
if (other.NumDevToDevCopyStreams != 0) {
NumDevToDevCopyStreams = other.NumDevToDevCopyStreams;
}
if (other.CollectiveRingOrder.Length != 0) {
CollectiveRingOrder = other.CollectiveRingOrder;
}
if (other.TimestampedAllocator != false) {
TimestampedAllocator = other.TimestampedAllocator;
}
if (other.KernelTrackerMaxInterval != 0) {
KernelTrackerMaxInterval = other.KernelTrackerMaxInterval;
}
if (other.KernelTrackerMaxBytes != 0) {
KernelTrackerMaxBytes = other.KernelTrackerMaxBytes;
}
if (other.KernelTrackerMaxPending != 0) {
KernelTrackerMaxPending = other.KernelTrackerMaxPending;
}
if (other.InternalFragmentationFraction != 0D) {
InternalFragmentationFraction = other.InternalFragmentationFraction;
}
if (other.UseCudaMallocAsync != false) {
UseCudaMallocAsync = other.UseCudaMallocAsync;
}
if (other.DisallowRetryOnAllocationFailure != false) {
DisallowRetryOnAllocationFailure = other.DisallowRetryOnAllocationFailure;
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 10: {
virtualDevices_.AddEntriesFrom(input, _repeated_virtualDevices_codec);
break;
}
case 16: {
UseUnifiedMemory = input.ReadBool();
break;
}
case 24: {
NumDevToDevCopyStreams = input.ReadInt32();
break;
}
case 34: {
CollectiveRingOrder = input.ReadString();
break;
}
case 40: {
TimestampedAllocator = input.ReadBool();
break;
}
case 56: {
KernelTrackerMaxInterval = input.ReadInt32();
break;
}
case 64: {
KernelTrackerMaxBytes = input.ReadInt32();
break;
}
case 72: {
KernelTrackerMaxPending = input.ReadInt32();
break;
}
case 81: {
InternalFragmentationFraction = input.ReadDouble();
break;
}
case 88: {
UseCudaMallocAsync = input.ReadBool();
break;
}
case 96: {
DisallowRetryOnAllocationFailure = input.ReadBool();
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 10: {
virtualDevices_.AddEntriesFrom(ref input, _repeated_virtualDevices_codec);
break;
}
case 16: {
UseUnifiedMemory = input.ReadBool();
break;
}
case 24: {
NumDevToDevCopyStreams = input.ReadInt32();
break;
}
case 34: {
CollectiveRingOrder = input.ReadString();
break;
}
case 40: {
TimestampedAllocator = input.ReadBool();
break;
}
case 56: {
KernelTrackerMaxInterval = input.ReadInt32();
break;
}
case 64: {
KernelTrackerMaxBytes = input.ReadInt32();
break;
}
case 72: {
KernelTrackerMaxPending = input.ReadInt32();
break;
}
case 81: {
InternalFragmentationFraction = input.ReadDouble();
break;
}
case 88: {
UseCudaMallocAsync = input.ReadBool();
break;
}
case 96: {
DisallowRetryOnAllocationFailure = input.ReadBool();
break;
}
}
}
}
#endif
#region Nested types
/// Container for nested types declared in the Experimental message type.
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static partial class Types {
///
/// Configuration for breaking down a visible GPU into multiple "virtual"
/// devices.
///
public sealed partial class VirtualDevices : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new VirtualDevices());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.GPUOptions.Types.Experimental.Descriptor.NestedTypes[0]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public VirtualDevices() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public VirtualDevices(VirtualDevices other) : this() {
memoryLimitMb_ = other.memoryLimitMb_.Clone();
priority_ = other.priority_.Clone();
deviceOrdinal_ = other.deviceOrdinal_.Clone();
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public VirtualDevices Clone() {
return new VirtualDevices(this);
}
/// Field number for the "memory_limit_mb" field.
public const int MemoryLimitMbFieldNumber = 1;
private static readonly pb::FieldCodec _repeated_memoryLimitMb_codec
= pb::FieldCodec.ForFloat(10);
private readonly pbc::RepeatedField memoryLimitMb_ = new pbc::RepeatedField();
///
/// Per "virtual" device memory limit, in MB. The number of elements in
/// the list is the number of virtual devices to create on the
/// corresponding visible GPU (see "virtual_devices" below).
/// If empty, it will create single virtual device taking all available
/// memory from the device.
///
/// For the concept of "visible" and "virtual" GPU, see the comments for
/// "visible_device_list" above for more information.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public pbc::RepeatedField MemoryLimitMb {
get { return memoryLimitMb_; }
}
/// Field number for the "priority" field.
public const int PriorityFieldNumber = 2;
private static readonly pb::FieldCodec _repeated_priority_codec
= pb::FieldCodec.ForInt32(18);
private readonly pbc::RepeatedField priority_ = new pbc::RepeatedField();
///
/// Priority values to use with the virtual devices. Use the cuda function
/// cudaDeviceGetStreamPriorityRange to query for valid range of values for
/// priority.
///
/// On a P4000 GPU with cuda 10.1, the priority range reported was 0 for
/// least priority and -1 for greatest priority.
///
/// If this field is not specified, then the virtual devices will be
/// created with the default. If this field has values set, then the size
/// of this must match with the above memory_limit_mb.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public pbc::RepeatedField Priority {
get { return priority_; }
}
/// Field number for the "device_ordinal" field.
public const int DeviceOrdinalFieldNumber = 3;
private static readonly pb::FieldCodec _repeated_deviceOrdinal_codec
= pb::FieldCodec.ForInt32(26);
private readonly pbc::RepeatedField deviceOrdinal_ = new pbc::RepeatedField();
///
/// Virtual Device ordinal number determines the device ID of the device.
/// A Virtual device with a lower ordinal number always receives the a
/// smaller device id. The phyiscal device id and location in the
/// virtual device list is used to break ties.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public pbc::RepeatedField DeviceOrdinal {
get { return deviceOrdinal_; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as VirtualDevices);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(VirtualDevices other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if(!memoryLimitMb_.Equals(other.memoryLimitMb_)) return false;
if(!priority_.Equals(other.priority_)) return false;
if(!deviceOrdinal_.Equals(other.deviceOrdinal_)) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
hash ^= memoryLimitMb_.GetHashCode();
hash ^= priority_.GetHashCode();
hash ^= deviceOrdinal_.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
memoryLimitMb_.WriteTo(output, _repeated_memoryLimitMb_codec);
priority_.WriteTo(output, _repeated_priority_codec);
deviceOrdinal_.WriteTo(output, _repeated_deviceOrdinal_codec);
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
memoryLimitMb_.WriteTo(ref output, _repeated_memoryLimitMb_codec);
priority_.WriteTo(ref output, _repeated_priority_codec);
deviceOrdinal_.WriteTo(ref output, _repeated_deviceOrdinal_codec);
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
size += memoryLimitMb_.CalculateSize(_repeated_memoryLimitMb_codec);
size += priority_.CalculateSize(_repeated_priority_codec);
size += deviceOrdinal_.CalculateSize(_repeated_deviceOrdinal_codec);
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(VirtualDevices other) {
if (other == null) {
return;
}
memoryLimitMb_.Add(other.memoryLimitMb_);
priority_.Add(other.priority_);
deviceOrdinal_.Add(other.deviceOrdinal_);
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 10:
case 13: {
memoryLimitMb_.AddEntriesFrom(input, _repeated_memoryLimitMb_codec);
break;
}
case 18:
case 16: {
priority_.AddEntriesFrom(input, _repeated_priority_codec);
break;
}
case 26:
case 24: {
deviceOrdinal_.AddEntriesFrom(input, _repeated_deviceOrdinal_codec);
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 10:
case 13: {
memoryLimitMb_.AddEntriesFrom(ref input, _repeated_memoryLimitMb_codec);
break;
}
case 18:
case 16: {
priority_.AddEntriesFrom(ref input, _repeated_priority_codec);
break;
}
case 26:
case 24: {
deviceOrdinal_.AddEntriesFrom(ref input, _repeated_deviceOrdinal_codec);
break;
}
}
}
}
#endif
}
}
#endregion
}
}
#endregion
}
///
/// Options passed to the graph optimizer
///
public sealed partial class OptimizerOptions : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new OptimizerOptions());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[1]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public OptimizerOptions() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public OptimizerOptions(OptimizerOptions other) : this() {
doCommonSubexpressionElimination_ = other.doCommonSubexpressionElimination_;
doConstantFolding_ = other.doConstantFolding_;
maxFoldedConstantInBytes_ = other.maxFoldedConstantInBytes_;
doFunctionInlining_ = other.doFunctionInlining_;
optLevel_ = other.optLevel_;
globalJitLevel_ = other.globalJitLevel_;
cpuGlobalJit_ = other.cpuGlobalJit_;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public OptimizerOptions Clone() {
return new OptimizerOptions(this);
}
/// Field number for the "do_common_subexpression_elimination" field.
public const int DoCommonSubexpressionEliminationFieldNumber = 1;
private bool doCommonSubexpressionElimination_;
///
/// If true, optimize the graph using common subexpression elimination.
/// Note: the optimization Level L1 will override this setting to true. So in
/// order to disable common subexpression elimination the opt_level has to be
/// set to L0.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool DoCommonSubexpressionElimination {
get { return doCommonSubexpressionElimination_; }
set {
doCommonSubexpressionElimination_ = value;
}
}
/// Field number for the "do_constant_folding" field.
public const int DoConstantFoldingFieldNumber = 2;
private bool doConstantFolding_;
///
/// If true, perform constant folding optimization on the graph.
/// Note: the optimization Level L1 will override this setting to true. So in
/// order to disable constant folding the opt_level has to be set to L0.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool DoConstantFolding {
get { return doConstantFolding_; }
set {
doConstantFolding_ = value;
}
}
/// Field number for the "max_folded_constant_in_bytes" field.
public const int MaxFoldedConstantInBytesFieldNumber = 6;
private long maxFoldedConstantInBytes_;
///
/// Constant folding optimization replaces tensors whose values can be
/// predetermined, with constant nodes. To avoid inserting too large constants,
/// the size of each constant created can be limited. If this value is zero, a
/// default limit of 10 MiB will be applied. If constant folding optimization
/// is disabled, this value is ignored.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public long MaxFoldedConstantInBytes {
get { return maxFoldedConstantInBytes_; }
set {
maxFoldedConstantInBytes_ = value;
}
}
/// Field number for the "do_function_inlining" field.
public const int DoFunctionInliningFieldNumber = 4;
private bool doFunctionInlining_;
///
/// If true, perform function inlining on the graph.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool DoFunctionInlining {
get { return doFunctionInlining_; }
set {
doFunctionInlining_ = value;
}
}
/// Field number for the "opt_level" field.
public const int OptLevelFieldNumber = 3;
private global::Tensorflow.OptimizerOptions.Types.Level optLevel_ = global::Tensorflow.OptimizerOptions.Types.Level.L1;
///
/// Overall optimization level. The actual optimizations applied will be the
/// logical OR of the flags that this level implies and any flags already set.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.OptimizerOptions.Types.Level OptLevel {
get { return optLevel_; }
set {
optLevel_ = value;
}
}
/// Field number for the "global_jit_level" field.
public const int GlobalJitLevelFieldNumber = 5;
private global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel globalJitLevel_ = global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel.Default;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel GlobalJitLevel {
get { return globalJitLevel_; }
set {
globalJitLevel_ = value;
}
}
/// Field number for the "cpu_global_jit" field.
public const int CpuGlobalJitFieldNumber = 7;
private bool cpuGlobalJit_;
///
/// CPU code will be autoclustered only if global_jit_level >= ON_1 and either:
/// - this flag is true, or
/// - TF_XLA_FLAGS contains --tf_xla_cpu_global_jit=true.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool CpuGlobalJit {
get { return cpuGlobalJit_; }
set {
cpuGlobalJit_ = value;
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as OptimizerOptions);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(OptimizerOptions other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if (DoCommonSubexpressionElimination != other.DoCommonSubexpressionElimination) return false;
if (DoConstantFolding != other.DoConstantFolding) return false;
if (MaxFoldedConstantInBytes != other.MaxFoldedConstantInBytes) return false;
if (DoFunctionInlining != other.DoFunctionInlining) return false;
if (OptLevel != other.OptLevel) return false;
if (GlobalJitLevel != other.GlobalJitLevel) return false;
if (CpuGlobalJit != other.CpuGlobalJit) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
if (DoCommonSubexpressionElimination != false) hash ^= DoCommonSubexpressionElimination.GetHashCode();
if (DoConstantFolding != false) hash ^= DoConstantFolding.GetHashCode();
if (MaxFoldedConstantInBytes != 0L) hash ^= MaxFoldedConstantInBytes.GetHashCode();
if (DoFunctionInlining != false) hash ^= DoFunctionInlining.GetHashCode();
if (OptLevel != global::Tensorflow.OptimizerOptions.Types.Level.L1) hash ^= OptLevel.GetHashCode();
if (GlobalJitLevel != global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel.Default) hash ^= GlobalJitLevel.GetHashCode();
if (CpuGlobalJit != false) hash ^= CpuGlobalJit.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
if (DoCommonSubexpressionElimination != false) {
output.WriteRawTag(8);
output.WriteBool(DoCommonSubexpressionElimination);
}
if (DoConstantFolding != false) {
output.WriteRawTag(16);
output.WriteBool(DoConstantFolding);
}
if (OptLevel != global::Tensorflow.OptimizerOptions.Types.Level.L1) {
output.WriteRawTag(24);
output.WriteEnum((int) OptLevel);
}
if (DoFunctionInlining != false) {
output.WriteRawTag(32);
output.WriteBool(DoFunctionInlining);
}
if (GlobalJitLevel != global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel.Default) {
output.WriteRawTag(40);
output.WriteEnum((int) GlobalJitLevel);
}
if (MaxFoldedConstantInBytes != 0L) {
output.WriteRawTag(48);
output.WriteInt64(MaxFoldedConstantInBytes);
}
if (CpuGlobalJit != false) {
output.WriteRawTag(56);
output.WriteBool(CpuGlobalJit);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
if (DoCommonSubexpressionElimination != false) {
output.WriteRawTag(8);
output.WriteBool(DoCommonSubexpressionElimination);
}
if (DoConstantFolding != false) {
output.WriteRawTag(16);
output.WriteBool(DoConstantFolding);
}
if (OptLevel != global::Tensorflow.OptimizerOptions.Types.Level.L1) {
output.WriteRawTag(24);
output.WriteEnum((int) OptLevel);
}
if (DoFunctionInlining != false) {
output.WriteRawTag(32);
output.WriteBool(DoFunctionInlining);
}
if (GlobalJitLevel != global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel.Default) {
output.WriteRawTag(40);
output.WriteEnum((int) GlobalJitLevel);
}
if (MaxFoldedConstantInBytes != 0L) {
output.WriteRawTag(48);
output.WriteInt64(MaxFoldedConstantInBytes);
}
if (CpuGlobalJit != false) {
output.WriteRawTag(56);
output.WriteBool(CpuGlobalJit);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
if (DoCommonSubexpressionElimination != false) {
size += 1 + 1;
}
if (DoConstantFolding != false) {
size += 1 + 1;
}
if (MaxFoldedConstantInBytes != 0L) {
size += 1 + pb::CodedOutputStream.ComputeInt64Size(MaxFoldedConstantInBytes);
}
if (DoFunctionInlining != false) {
size += 1 + 1;
}
if (OptLevel != global::Tensorflow.OptimizerOptions.Types.Level.L1) {
size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) OptLevel);
}
if (GlobalJitLevel != global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel.Default) {
size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) GlobalJitLevel);
}
if (CpuGlobalJit != false) {
size += 1 + 1;
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(OptimizerOptions other) {
if (other == null) {
return;
}
if (other.DoCommonSubexpressionElimination != false) {
DoCommonSubexpressionElimination = other.DoCommonSubexpressionElimination;
}
if (other.DoConstantFolding != false) {
DoConstantFolding = other.DoConstantFolding;
}
if (other.MaxFoldedConstantInBytes != 0L) {
MaxFoldedConstantInBytes = other.MaxFoldedConstantInBytes;
}
if (other.DoFunctionInlining != false) {
DoFunctionInlining = other.DoFunctionInlining;
}
if (other.OptLevel != global::Tensorflow.OptimizerOptions.Types.Level.L1) {
OptLevel = other.OptLevel;
}
if (other.GlobalJitLevel != global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel.Default) {
GlobalJitLevel = other.GlobalJitLevel;
}
if (other.CpuGlobalJit != false) {
CpuGlobalJit = other.CpuGlobalJit;
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 8: {
DoCommonSubexpressionElimination = input.ReadBool();
break;
}
case 16: {
DoConstantFolding = input.ReadBool();
break;
}
case 24: {
OptLevel = (global::Tensorflow.OptimizerOptions.Types.Level) input.ReadEnum();
break;
}
case 32: {
DoFunctionInlining = input.ReadBool();
break;
}
case 40: {
GlobalJitLevel = (global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel) input.ReadEnum();
break;
}
case 48: {
MaxFoldedConstantInBytes = input.ReadInt64();
break;
}
case 56: {
CpuGlobalJit = input.ReadBool();
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 8: {
DoCommonSubexpressionElimination = input.ReadBool();
break;
}
case 16: {
DoConstantFolding = input.ReadBool();
break;
}
case 24: {
OptLevel = (global::Tensorflow.OptimizerOptions.Types.Level) input.ReadEnum();
break;
}
case 32: {
DoFunctionInlining = input.ReadBool();
break;
}
case 40: {
GlobalJitLevel = (global::Tensorflow.OptimizerOptions.Types.GlobalJitLevel) input.ReadEnum();
break;
}
case 48: {
MaxFoldedConstantInBytes = input.ReadInt64();
break;
}
case 56: {
CpuGlobalJit = input.ReadBool();
break;
}
}
}
}
#endif
#region Nested types
/// Container for nested types declared in the OptimizerOptions message type.
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static partial class Types {
///
/// Optimization level
///
public enum Level {
///
/// L1 is the default level.
/// Optimization performed at L1 :
/// 1. Common subexpression elimination
/// 2. Constant folding
///
[pbr::OriginalName("L1")] L1 = 0,
///
/// No optimizations
///
[pbr::OriginalName("L0")] L0 = -1,
}
///
/// Control the use of the compiler/jit. Experimental.
///
public enum GlobalJitLevel {
///
/// Default setting ("off" now, but later expected to be "on")
///
[pbr::OriginalName("DEFAULT")] Default = 0,
[pbr::OriginalName("OFF")] Off = -1,
///
/// The following settings turn on compilation, with higher values being
/// more aggressive. Higher values may reduce opportunities for parallelism
/// and may use more memory. (At present, there is no distinction, but this
/// is expected to change.)
///
[pbr::OriginalName("ON_1")] On1 = 1,
[pbr::OriginalName("ON_2")] On2 = 2,
}
}
#endregion
}
public sealed partial class GraphOptions : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new GraphOptions());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[2]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public GraphOptions() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public GraphOptions(GraphOptions other) : this() {
enableRecvScheduling_ = other.enableRecvScheduling_;
optimizerOptions_ = other.optimizerOptions_ != null ? other.optimizerOptions_.Clone() : null;
buildCostModel_ = other.buildCostModel_;
buildCostModelAfter_ = other.buildCostModelAfter_;
inferShapes_ = other.inferShapes_;
placePrunedGraph_ = other.placePrunedGraph_;
enableBfloat16Sendrecv_ = other.enableBfloat16Sendrecv_;
timelineStep_ = other.timelineStep_;
rewriteOptions_ = other.rewriteOptions_ != null ? other.rewriteOptions_.Clone() : null;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public GraphOptions Clone() {
return new GraphOptions(this);
}
/// Field number for the "enable_recv_scheduling" field.
public const int EnableRecvSchedulingFieldNumber = 2;
private bool enableRecvScheduling_;
///
/// If true, use control flow to schedule the activation of Recv nodes.
/// (Currently ignored.)
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool EnableRecvScheduling {
get { return enableRecvScheduling_; }
set {
enableRecvScheduling_ = value;
}
}
/// Field number for the "optimizer_options" field.
public const int OptimizerOptionsFieldNumber = 3;
private global::Tensorflow.OptimizerOptions optimizerOptions_;
///
/// Options controlling how graph is optimized.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.OptimizerOptions OptimizerOptions {
get { return optimizerOptions_; }
set {
optimizerOptions_ = value;
}
}
/// Field number for the "build_cost_model" field.
public const int BuildCostModelFieldNumber = 4;
private long buildCostModel_;
///
/// The number of steps to run before returning a cost model detailing
/// the memory usage and performance of each node of the graph. 0 means
/// no cost model.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public long BuildCostModel {
get { return buildCostModel_; }
set {
buildCostModel_ = value;
}
}
/// Field number for the "build_cost_model_after" field.
public const int BuildCostModelAfterFieldNumber = 9;
private long buildCostModelAfter_;
///
/// The number of steps to skip before collecting statistics for the
/// cost model.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public long BuildCostModelAfter {
get { return buildCostModelAfter_; }
set {
buildCostModelAfter_ = value;
}
}
/// Field number for the "infer_shapes" field.
public const int InferShapesFieldNumber = 5;
private bool inferShapes_;
///
/// Annotate each Node with Op output shape data, to the extent it can
/// be statically inferred.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool InferShapes {
get { return inferShapes_; }
set {
inferShapes_ = value;
}
}
/// Field number for the "place_pruned_graph" field.
public const int PlacePrunedGraphFieldNumber = 6;
private bool placePrunedGraph_;
///
/// Only place the subgraphs that are run, rather than the entire graph.
///
/// This is useful for interactive graph building, where one might
/// produce graphs that cannot be placed during the debugging
/// process. In particular, it allows the client to continue work in
/// a session after adding a node to a graph whose placement
/// constraints are unsatisfiable.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool PlacePrunedGraph {
get { return placePrunedGraph_; }
set {
placePrunedGraph_ = value;
}
}
/// Field number for the "enable_bfloat16_sendrecv" field.
public const int EnableBfloat16SendrecvFieldNumber = 7;
private bool enableBfloat16Sendrecv_;
///
/// If true, transfer float values between processes as bfloat16.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool EnableBfloat16Sendrecv {
get { return enableBfloat16Sendrecv_; }
set {
enableBfloat16Sendrecv_ = value;
}
}
/// Field number for the "timeline_step" field.
public const int TimelineStepFieldNumber = 8;
private int timelineStep_;
///
/// If > 0, record a timeline every this many steps.
/// EXPERIMENTAL: This currently has no effect in MasterSession.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int TimelineStep {
get { return timelineStep_; }
set {
timelineStep_ = value;
}
}
/// Field number for the "rewrite_options" field.
public const int RewriteOptionsFieldNumber = 10;
private global::Tensorflow.RewriterConfig rewriteOptions_;
///
/// Options that control the type and amount of graph rewriting.
/// Not currently configurable via the public Python API (i.e. there is no API
/// stability guarantee if you import RewriterConfig explicitly).
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.RewriterConfig RewriteOptions {
get { return rewriteOptions_; }
set {
rewriteOptions_ = value;
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as GraphOptions);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(GraphOptions other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if (EnableRecvScheduling != other.EnableRecvScheduling) return false;
if (!object.Equals(OptimizerOptions, other.OptimizerOptions)) return false;
if (BuildCostModel != other.BuildCostModel) return false;
if (BuildCostModelAfter != other.BuildCostModelAfter) return false;
if (InferShapes != other.InferShapes) return false;
if (PlacePrunedGraph != other.PlacePrunedGraph) return false;
if (EnableBfloat16Sendrecv != other.EnableBfloat16Sendrecv) return false;
if (TimelineStep != other.TimelineStep) return false;
if (!object.Equals(RewriteOptions, other.RewriteOptions)) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
if (EnableRecvScheduling != false) hash ^= EnableRecvScheduling.GetHashCode();
if (optimizerOptions_ != null) hash ^= OptimizerOptions.GetHashCode();
if (BuildCostModel != 0L) hash ^= BuildCostModel.GetHashCode();
if (BuildCostModelAfter != 0L) hash ^= BuildCostModelAfter.GetHashCode();
if (InferShapes != false) hash ^= InferShapes.GetHashCode();
if (PlacePrunedGraph != false) hash ^= PlacePrunedGraph.GetHashCode();
if (EnableBfloat16Sendrecv != false) hash ^= EnableBfloat16Sendrecv.GetHashCode();
if (TimelineStep != 0) hash ^= TimelineStep.GetHashCode();
if (rewriteOptions_ != null) hash ^= RewriteOptions.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
if (EnableRecvScheduling != false) {
output.WriteRawTag(16);
output.WriteBool(EnableRecvScheduling);
}
if (optimizerOptions_ != null) {
output.WriteRawTag(26);
output.WriteMessage(OptimizerOptions);
}
if (BuildCostModel != 0L) {
output.WriteRawTag(32);
output.WriteInt64(BuildCostModel);
}
if (InferShapes != false) {
output.WriteRawTag(40);
output.WriteBool(InferShapes);
}
if (PlacePrunedGraph != false) {
output.WriteRawTag(48);
output.WriteBool(PlacePrunedGraph);
}
if (EnableBfloat16Sendrecv != false) {
output.WriteRawTag(56);
output.WriteBool(EnableBfloat16Sendrecv);
}
if (TimelineStep != 0) {
output.WriteRawTag(64);
output.WriteInt32(TimelineStep);
}
if (BuildCostModelAfter != 0L) {
output.WriteRawTag(72);
output.WriteInt64(BuildCostModelAfter);
}
if (rewriteOptions_ != null) {
output.WriteRawTag(82);
output.WriteMessage(RewriteOptions);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
if (EnableRecvScheduling != false) {
output.WriteRawTag(16);
output.WriteBool(EnableRecvScheduling);
}
if (optimizerOptions_ != null) {
output.WriteRawTag(26);
output.WriteMessage(OptimizerOptions);
}
if (BuildCostModel != 0L) {
output.WriteRawTag(32);
output.WriteInt64(BuildCostModel);
}
if (InferShapes != false) {
output.WriteRawTag(40);
output.WriteBool(InferShapes);
}
if (PlacePrunedGraph != false) {
output.WriteRawTag(48);
output.WriteBool(PlacePrunedGraph);
}
if (EnableBfloat16Sendrecv != false) {
output.WriteRawTag(56);
output.WriteBool(EnableBfloat16Sendrecv);
}
if (TimelineStep != 0) {
output.WriteRawTag(64);
output.WriteInt32(TimelineStep);
}
if (BuildCostModelAfter != 0L) {
output.WriteRawTag(72);
output.WriteInt64(BuildCostModelAfter);
}
if (rewriteOptions_ != null) {
output.WriteRawTag(82);
output.WriteMessage(RewriteOptions);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
if (EnableRecvScheduling != false) {
size += 1 + 1;
}
if (optimizerOptions_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(OptimizerOptions);
}
if (BuildCostModel != 0L) {
size += 1 + pb::CodedOutputStream.ComputeInt64Size(BuildCostModel);
}
if (BuildCostModelAfter != 0L) {
size += 1 + pb::CodedOutputStream.ComputeInt64Size(BuildCostModelAfter);
}
if (InferShapes != false) {
size += 1 + 1;
}
if (PlacePrunedGraph != false) {
size += 1 + 1;
}
if (EnableBfloat16Sendrecv != false) {
size += 1 + 1;
}
if (TimelineStep != 0) {
size += 1 + pb::CodedOutputStream.ComputeInt32Size(TimelineStep);
}
if (rewriteOptions_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(RewriteOptions);
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(GraphOptions other) {
if (other == null) {
return;
}
if (other.EnableRecvScheduling != false) {
EnableRecvScheduling = other.EnableRecvScheduling;
}
if (other.optimizerOptions_ != null) {
if (optimizerOptions_ == null) {
OptimizerOptions = new global::Tensorflow.OptimizerOptions();
}
OptimizerOptions.MergeFrom(other.OptimizerOptions);
}
if (other.BuildCostModel != 0L) {
BuildCostModel = other.BuildCostModel;
}
if (other.BuildCostModelAfter != 0L) {
BuildCostModelAfter = other.BuildCostModelAfter;
}
if (other.InferShapes != false) {
InferShapes = other.InferShapes;
}
if (other.PlacePrunedGraph != false) {
PlacePrunedGraph = other.PlacePrunedGraph;
}
if (other.EnableBfloat16Sendrecv != false) {
EnableBfloat16Sendrecv = other.EnableBfloat16Sendrecv;
}
if (other.TimelineStep != 0) {
TimelineStep = other.TimelineStep;
}
if (other.rewriteOptions_ != null) {
if (rewriteOptions_ == null) {
RewriteOptions = new global::Tensorflow.RewriterConfig();
}
RewriteOptions.MergeFrom(other.RewriteOptions);
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 16: {
EnableRecvScheduling = input.ReadBool();
break;
}
case 26: {
if (optimizerOptions_ == null) {
OptimizerOptions = new global::Tensorflow.OptimizerOptions();
}
input.ReadMessage(OptimizerOptions);
break;
}
case 32: {
BuildCostModel = input.ReadInt64();
break;
}
case 40: {
InferShapes = input.ReadBool();
break;
}
case 48: {
PlacePrunedGraph = input.ReadBool();
break;
}
case 56: {
EnableBfloat16Sendrecv = input.ReadBool();
break;
}
case 64: {
TimelineStep = input.ReadInt32();
break;
}
case 72: {
BuildCostModelAfter = input.ReadInt64();
break;
}
case 82: {
if (rewriteOptions_ == null) {
RewriteOptions = new global::Tensorflow.RewriterConfig();
}
input.ReadMessage(RewriteOptions);
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 16: {
EnableRecvScheduling = input.ReadBool();
break;
}
case 26: {
if (optimizerOptions_ == null) {
OptimizerOptions = new global::Tensorflow.OptimizerOptions();
}
input.ReadMessage(OptimizerOptions);
break;
}
case 32: {
BuildCostModel = input.ReadInt64();
break;
}
case 40: {
InferShapes = input.ReadBool();
break;
}
case 48: {
PlacePrunedGraph = input.ReadBool();
break;
}
case 56: {
EnableBfloat16Sendrecv = input.ReadBool();
break;
}
case 64: {
TimelineStep = input.ReadInt32();
break;
}
case 72: {
BuildCostModelAfter = input.ReadInt64();
break;
}
case 82: {
if (rewriteOptions_ == null) {
RewriteOptions = new global::Tensorflow.RewriterConfig();
}
input.ReadMessage(RewriteOptions);
break;
}
}
}
}
#endif
}
public sealed partial class ThreadPoolOptionProto : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ThreadPoolOptionProto());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[3]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public ThreadPoolOptionProto() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public ThreadPoolOptionProto(ThreadPoolOptionProto other) : this() {
numThreads_ = other.numThreads_;
globalName_ = other.globalName_;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public ThreadPoolOptionProto Clone() {
return new ThreadPoolOptionProto(this);
}
/// Field number for the "num_threads" field.
public const int NumThreadsFieldNumber = 1;
private int numThreads_;
///
/// The number of threads in the pool.
///
/// 0 means the system picks a value based on where this option proto is used
/// (see the declaration of the specific field for more info).
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int NumThreads {
get { return numThreads_; }
set {
numThreads_ = value;
}
}
/// Field number for the "global_name" field.
public const int GlobalNameFieldNumber = 2;
private string globalName_ = "";
///
/// The global name of the threadpool.
///
/// If empty, then the threadpool is made and used according to the scope it's
/// in - e.g., for a session threadpool, it is used by that session only.
///
/// If non-empty, then:
/// - a global threadpool associated with this name is looked
/// up or created. This allows, for example, sharing one threadpool across
/// many sessions (e.g., like the default behavior, if
/// inter_op_parallelism_threads is not configured), but still partitioning
/// into a large and small pool.
/// - if the threadpool for this global_name already exists, then it is an
/// error if the existing pool was created using a different num_threads
/// value as is specified on this call.
/// - threadpools created this way are never garbage collected.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public string GlobalName {
get { return globalName_; }
set {
globalName_ = pb::ProtoPreconditions.CheckNotNull(value, "value");
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as ThreadPoolOptionProto);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(ThreadPoolOptionProto other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if (NumThreads != other.NumThreads) return false;
if (GlobalName != other.GlobalName) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
if (NumThreads != 0) hash ^= NumThreads.GetHashCode();
if (GlobalName.Length != 0) hash ^= GlobalName.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
if (NumThreads != 0) {
output.WriteRawTag(8);
output.WriteInt32(NumThreads);
}
if (GlobalName.Length != 0) {
output.WriteRawTag(18);
output.WriteString(GlobalName);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
if (NumThreads != 0) {
output.WriteRawTag(8);
output.WriteInt32(NumThreads);
}
if (GlobalName.Length != 0) {
output.WriteRawTag(18);
output.WriteString(GlobalName);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
if (NumThreads != 0) {
size += 1 + pb::CodedOutputStream.ComputeInt32Size(NumThreads);
}
if (GlobalName.Length != 0) {
size += 1 + pb::CodedOutputStream.ComputeStringSize(GlobalName);
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(ThreadPoolOptionProto other) {
if (other == null) {
return;
}
if (other.NumThreads != 0) {
NumThreads = other.NumThreads;
}
if (other.GlobalName.Length != 0) {
GlobalName = other.GlobalName;
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 8: {
NumThreads = input.ReadInt32();
break;
}
case 18: {
GlobalName = input.ReadString();
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 8: {
NumThreads = input.ReadInt32();
break;
}
case 18: {
GlobalName = input.ReadString();
break;
}
}
}
}
#endif
}
public sealed partial class RPCOptions : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new RPCOptions());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[4]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public RPCOptions() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public RPCOptions(RPCOptions other) : this() {
useRpcForInprocessMaster_ = other.useRpcForInprocessMaster_;
compressionAlgorithm_ = other.compressionAlgorithm_;
compressionLevel_ = other.compressionLevel_;
cacheRpcResponse_ = other.cacheRpcResponse_;
disableSessionConnectionSharing_ = other.disableSessionConnectionSharing_;
numChannelsPerTarget_ = other.numChannelsPerTarget_;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public RPCOptions Clone() {
return new RPCOptions(this);
}
/// Field number for the "use_rpc_for_inprocess_master" field.
public const int UseRpcForInprocessMasterFieldNumber = 1;
private bool useRpcForInprocessMaster_;
///
/// If true, always use RPC to contact the session target.
///
/// If false (the default option), TensorFlow may use an optimized
/// transport for client-master communication that avoids the RPC
/// stack. This option is primarily for used testing the RPC stack.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool UseRpcForInprocessMaster {
get { return useRpcForInprocessMaster_; }
set {
useRpcForInprocessMaster_ = value;
}
}
/// Field number for the "compression_algorithm" field.
public const int CompressionAlgorithmFieldNumber = 2;
private string compressionAlgorithm_ = "";
///
/// The compression algorithm to be used. One of "deflate", "gzip".
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public string CompressionAlgorithm {
get { return compressionAlgorithm_; }
set {
compressionAlgorithm_ = pb::ProtoPreconditions.CheckNotNull(value, "value");
}
}
/// Field number for the "compression_level" field.
public const int CompressionLevelFieldNumber = 3;
private int compressionLevel_;
///
/// If compression_algorithm is set, the compression level to be used.
/// From 0 (no compression), up to 3.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CompressionLevel {
get { return compressionLevel_; }
set {
compressionLevel_ = value;
}
}
/// Field number for the "cache_rpc_response" field.
public const int CacheRpcResponseFieldNumber = 4;
private bool cacheRpcResponse_;
///
/// Setting cache_rpc_response to true will enable sender side caching of
/// response for RecvTensorAsync and RecvBufAsync to allow receiver to retry
/// requests . This is only necessary when the network fabric is experiencing a
/// significant error rate. Without it we'll fail a step on an network error,
/// while with it we'll be able to complete long steps (like complex
/// initializations) in the face of some network errors during RecvTensor.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool CacheRpcResponse {
get { return cacheRpcResponse_; }
set {
cacheRpcResponse_ = value;
}
}
/// Field number for the "disable_session_connection_sharing" field.
public const int DisableSessionConnectionSharingFieldNumber = 5;
private bool disableSessionConnectionSharing_;
///
/// Disables TCP connection sharing when opening a new RPC channel.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool DisableSessionConnectionSharing {
get { return disableSessionConnectionSharing_; }
set {
disableSessionConnectionSharing_ = value;
}
}
/// Field number for the "num_channels_per_target" field.
public const int NumChannelsPerTargetFieldNumber = 6;
private int numChannelsPerTarget_;
///
/// Setting num_channels_per_target > 0 allows uses of multiple channels to
/// communicate to the same target. This can be used to improve the aggregate
/// throughput on high speed links (e.g 100G) where single connection is not
/// sufficient to maximize link utilization. Note that a single RPC only goes
/// on a single channel, this only helps in situations where there are multiple
/// transfers to the same target overlapping in time.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int NumChannelsPerTarget {
get { return numChannelsPerTarget_; }
set {
numChannelsPerTarget_ = value;
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as RPCOptions);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(RPCOptions other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if (UseRpcForInprocessMaster != other.UseRpcForInprocessMaster) return false;
if (CompressionAlgorithm != other.CompressionAlgorithm) return false;
if (CompressionLevel != other.CompressionLevel) return false;
if (CacheRpcResponse != other.CacheRpcResponse) return false;
if (DisableSessionConnectionSharing != other.DisableSessionConnectionSharing) return false;
if (NumChannelsPerTarget != other.NumChannelsPerTarget) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
if (UseRpcForInprocessMaster != false) hash ^= UseRpcForInprocessMaster.GetHashCode();
if (CompressionAlgorithm.Length != 0) hash ^= CompressionAlgorithm.GetHashCode();
if (CompressionLevel != 0) hash ^= CompressionLevel.GetHashCode();
if (CacheRpcResponse != false) hash ^= CacheRpcResponse.GetHashCode();
if (DisableSessionConnectionSharing != false) hash ^= DisableSessionConnectionSharing.GetHashCode();
if (NumChannelsPerTarget != 0) hash ^= NumChannelsPerTarget.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
if (UseRpcForInprocessMaster != false) {
output.WriteRawTag(8);
output.WriteBool(UseRpcForInprocessMaster);
}
if (CompressionAlgorithm.Length != 0) {
output.WriteRawTag(18);
output.WriteString(CompressionAlgorithm);
}
if (CompressionLevel != 0) {
output.WriteRawTag(24);
output.WriteInt32(CompressionLevel);
}
if (CacheRpcResponse != false) {
output.WriteRawTag(32);
output.WriteBool(CacheRpcResponse);
}
if (DisableSessionConnectionSharing != false) {
output.WriteRawTag(40);
output.WriteBool(DisableSessionConnectionSharing);
}
if (NumChannelsPerTarget != 0) {
output.WriteRawTag(48);
output.WriteInt32(NumChannelsPerTarget);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
if (UseRpcForInprocessMaster != false) {
output.WriteRawTag(8);
output.WriteBool(UseRpcForInprocessMaster);
}
if (CompressionAlgorithm.Length != 0) {
output.WriteRawTag(18);
output.WriteString(CompressionAlgorithm);
}
if (CompressionLevel != 0) {
output.WriteRawTag(24);
output.WriteInt32(CompressionLevel);
}
if (CacheRpcResponse != false) {
output.WriteRawTag(32);
output.WriteBool(CacheRpcResponse);
}
if (DisableSessionConnectionSharing != false) {
output.WriteRawTag(40);
output.WriteBool(DisableSessionConnectionSharing);
}
if (NumChannelsPerTarget != 0) {
output.WriteRawTag(48);
output.WriteInt32(NumChannelsPerTarget);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
if (UseRpcForInprocessMaster != false) {
size += 1 + 1;
}
if (CompressionAlgorithm.Length != 0) {
size += 1 + pb::CodedOutputStream.ComputeStringSize(CompressionAlgorithm);
}
if (CompressionLevel != 0) {
size += 1 + pb::CodedOutputStream.ComputeInt32Size(CompressionLevel);
}
if (CacheRpcResponse != false) {
size += 1 + 1;
}
if (DisableSessionConnectionSharing != false) {
size += 1 + 1;
}
if (NumChannelsPerTarget != 0) {
size += 1 + pb::CodedOutputStream.ComputeInt32Size(NumChannelsPerTarget);
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(RPCOptions other) {
if (other == null) {
return;
}
if (other.UseRpcForInprocessMaster != false) {
UseRpcForInprocessMaster = other.UseRpcForInprocessMaster;
}
if (other.CompressionAlgorithm.Length != 0) {
CompressionAlgorithm = other.CompressionAlgorithm;
}
if (other.CompressionLevel != 0) {
CompressionLevel = other.CompressionLevel;
}
if (other.CacheRpcResponse != false) {
CacheRpcResponse = other.CacheRpcResponse;
}
if (other.DisableSessionConnectionSharing != false) {
DisableSessionConnectionSharing = other.DisableSessionConnectionSharing;
}
if (other.NumChannelsPerTarget != 0) {
NumChannelsPerTarget = other.NumChannelsPerTarget;
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 8: {
UseRpcForInprocessMaster = input.ReadBool();
break;
}
case 18: {
CompressionAlgorithm = input.ReadString();
break;
}
case 24: {
CompressionLevel = input.ReadInt32();
break;
}
case 32: {
CacheRpcResponse = input.ReadBool();
break;
}
case 40: {
DisableSessionConnectionSharing = input.ReadBool();
break;
}
case 48: {
NumChannelsPerTarget = input.ReadInt32();
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 8: {
UseRpcForInprocessMaster = input.ReadBool();
break;
}
case 18: {
CompressionAlgorithm = input.ReadString();
break;
}
case 24: {
CompressionLevel = input.ReadInt32();
break;
}
case 32: {
CacheRpcResponse = input.ReadBool();
break;
}
case 40: {
DisableSessionConnectionSharing = input.ReadBool();
break;
}
case 48: {
NumChannelsPerTarget = input.ReadInt32();
break;
}
}
}
}
#endif
}
///
/// Metadata about the session.
///
/// This can be used by the runtime and the Ops for debugging, monitoring, etc.
///
/// The (name, version) tuple is expected to be a unique identifier for
/// sessions within the same process.
///
/// NOTE: This is currently used and propagated only by the direct session.
///
public sealed partial class SessionMetadata : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new SessionMetadata());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[5]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public SessionMetadata() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public SessionMetadata(SessionMetadata other) : this() {
name_ = other.name_;
version_ = other.version_;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public SessionMetadata Clone() {
return new SessionMetadata(this);
}
/// Field number for the "name" field.
public const int NameFieldNumber = 1;
private string name_ = "";
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public string Name {
get { return name_; }
set {
name_ = pb::ProtoPreconditions.CheckNotNull(value, "value");
}
}
/// Field number for the "version" field.
public const int VersionFieldNumber = 2;
private long version_;
///
/// The version is optional. If set, needs to be >= 0.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public long Version {
get { return version_; }
set {
version_ = value;
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as SessionMetadata);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(SessionMetadata other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if (Name != other.Name) return false;
if (Version != other.Version) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
if (Name.Length != 0) hash ^= Name.GetHashCode();
if (Version != 0L) hash ^= Version.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
if (Name.Length != 0) {
output.WriteRawTag(10);
output.WriteString(Name);
}
if (Version != 0L) {
output.WriteRawTag(16);
output.WriteInt64(Version);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
if (Name.Length != 0) {
output.WriteRawTag(10);
output.WriteString(Name);
}
if (Version != 0L) {
output.WriteRawTag(16);
output.WriteInt64(Version);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
if (Name.Length != 0) {
size += 1 + pb::CodedOutputStream.ComputeStringSize(Name);
}
if (Version != 0L) {
size += 1 + pb::CodedOutputStream.ComputeInt64Size(Version);
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(SessionMetadata other) {
if (other == null) {
return;
}
if (other.Name.Length != 0) {
Name = other.Name;
}
if (other.Version != 0L) {
Version = other.Version;
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 10: {
Name = input.ReadString();
break;
}
case 16: {
Version = input.ReadInt64();
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 10: {
Name = input.ReadString();
break;
}
case 16: {
Version = input.ReadInt64();
break;
}
}
}
}
#endif
}
///
/// Session configuration parameters.
/// The system picks appropriate values for fields that are not set.
///
public sealed partial class ConfigProto : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new ConfigProto());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[6]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public ConfigProto() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public ConfigProto(ConfigProto other) : this() {
deviceCount_ = other.deviceCount_.Clone();
intraOpParallelismThreads_ = other.intraOpParallelismThreads_;
interOpParallelismThreads_ = other.interOpParallelismThreads_;
usePerSessionThreads_ = other.usePerSessionThreads_;
sessionInterOpThreadPool_ = other.sessionInterOpThreadPool_.Clone();
placementPeriod_ = other.placementPeriod_;
deviceFilters_ = other.deviceFilters_.Clone();
gpuOptions_ = other.gpuOptions_ != null ? other.gpuOptions_.Clone() : null;
allowSoftPlacement_ = other.allowSoftPlacement_;
logDevicePlacement_ = other.logDevicePlacement_;
graphOptions_ = other.graphOptions_ != null ? other.graphOptions_.Clone() : null;
operationTimeoutInMs_ = other.operationTimeoutInMs_;
rpcOptions_ = other.rpcOptions_ != null ? other.rpcOptions_.Clone() : null;
clusterDef_ = other.clusterDef_ != null ? other.clusterDef_.Clone() : null;
isolateSessionState_ = other.isolateSessionState_;
shareClusterDevicesInSession_ = other.shareClusterDevicesInSession_;
experimental_ = other.experimental_ != null ? other.experimental_.Clone() : null;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public ConfigProto Clone() {
return new ConfigProto(this);
}
/// Field number for the "device_count" field.
public const int DeviceCountFieldNumber = 1;
private static readonly pbc::MapField.Codec _map_deviceCount_codec
= new pbc::MapField.Codec(pb::FieldCodec.ForString(10, ""), pb::FieldCodec.ForInt32(16, 0), 10);
private readonly pbc::MapField deviceCount_ = new pbc::MapField();
///
/// Map from device type name (e.g., "CPU" or "GPU" ) to maximum
/// number of devices of that type to use. If a particular device
/// type is not found in the map, the system picks an appropriate
/// number.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public pbc::MapField DeviceCount {
get { return deviceCount_; }
}
/// Field number for the "intra_op_parallelism_threads" field.
public const int IntraOpParallelismThreadsFieldNumber = 2;
private int intraOpParallelismThreads_;
///
/// The execution of an individual op (for some op types) can be
/// parallelized on a pool of intra_op_parallelism_threads.
/// 0 means the system picks an appropriate number.
///
/// If you create an ordinary session, e.g., from Python or C++,
/// then there is exactly one intra op thread pool per process.
/// The first session created determines the number of threads in this pool.
/// All subsequent sessions reuse/share this one global pool.
///
/// There are notable exceptions to the default behavior described above:
/// 1. There is an environment variable for overriding this thread pool,
/// named TF_OVERRIDE_GLOBAL_THREADPOOL.
/// 2. When connecting to a server, such as a remote `tf.train.Server`
/// instance, then this option will be ignored altogether.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int IntraOpParallelismThreads {
get { return intraOpParallelismThreads_; }
set {
intraOpParallelismThreads_ = value;
}
}
/// Field number for the "inter_op_parallelism_threads" field.
public const int InterOpParallelismThreadsFieldNumber = 5;
private int interOpParallelismThreads_;
///
/// Nodes that perform blocking operations are enqueued on a pool of
/// inter_op_parallelism_threads available in each process.
///
/// 0 means the system picks an appropriate number.
/// Negative means all operations are performed in caller's thread.
///
/// Note that the first Session created in the process sets the
/// number of threads for all future sessions unless use_per_session_threads is
/// true or session_inter_op_thread_pool is configured.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int InterOpParallelismThreads {
get { return interOpParallelismThreads_; }
set {
interOpParallelismThreads_ = value;
}
}
/// Field number for the "use_per_session_threads" field.
public const int UsePerSessionThreadsFieldNumber = 9;
private bool usePerSessionThreads_;
///
/// If true, use a new set of threads for this session rather than the global
/// pool of threads. Only supported by direct sessions.
///
/// If false, use the global threads created by the first session, or the
/// per-session thread pools configured by session_inter_op_thread_pool.
///
/// This option is deprecated. The same effect can be achieved by setting
/// session_inter_op_thread_pool to have one element, whose num_threads equals
/// inter_op_parallelism_threads.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool UsePerSessionThreads {
get { return usePerSessionThreads_; }
set {
usePerSessionThreads_ = value;
}
}
/// Field number for the "session_inter_op_thread_pool" field.
public const int SessionInterOpThreadPoolFieldNumber = 12;
private static readonly pb::FieldCodec _repeated_sessionInterOpThreadPool_codec
= pb::FieldCodec.ForMessage(98, global::Tensorflow.ThreadPoolOptionProto.Parser);
private readonly pbc::RepeatedField sessionInterOpThreadPool_ = new pbc::RepeatedField();
///
/// This option is experimental - it may be replaced with a different mechanism
/// in the future.
///
/// Configures session thread pools. If this is configured, then RunOptions for
/// a Run call can select the thread pool to use.
///
/// The intended use is for when some session invocations need to run in a
/// background pool limited to a small number of threads:
/// - For example, a session may be configured to have one large pool (for
/// regular compute) and one small pool (for periodic, low priority work);
/// using the small pool is currently the mechanism for limiting the inter-op
/// parallelism of the low priority work. Note that it does not limit the
/// parallelism of work spawned by a single op kernel implementation.
/// - Using this setting is normally not needed in training, but may help some
/// serving use cases.
/// - It is also generally recommended to set the global_name field of this
/// proto, to avoid creating multiple large pools. It is typically better to
/// run the non-low-priority work, even across sessions, in a single large
/// pool.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public pbc::RepeatedField SessionInterOpThreadPool {
get { return sessionInterOpThreadPool_; }
}
/// Field number for the "placement_period" field.
public const int PlacementPeriodFieldNumber = 3;
private int placementPeriod_;
///
/// Assignment of Nodes to Devices is recomputed every placement_period
/// steps until the system warms up (at which point the recomputation
/// typically slows down automatically).
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int PlacementPeriod {
get { return placementPeriod_; }
set {
placementPeriod_ = value;
}
}
/// Field number for the "device_filters" field.
public const int DeviceFiltersFieldNumber = 4;
private static readonly pb::FieldCodec _repeated_deviceFilters_codec
= pb::FieldCodec.ForString(34);
private readonly pbc::RepeatedField deviceFilters_ = new pbc::RepeatedField();
///
/// When any filters are present sessions will ignore all devices which do not
/// match the filters. Each filter can be partially specified, e.g. "/job:ps"
/// "/job:worker/replica:3", etc.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public pbc::RepeatedField DeviceFilters {
get { return deviceFilters_; }
}
/// Field number for the "gpu_options" field.
public const int GpuOptionsFieldNumber = 6;
private global::Tensorflow.GPUOptions gpuOptions_;
///
/// Options that apply to all GPUs.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.GPUOptions GpuOptions {
get { return gpuOptions_; }
set {
gpuOptions_ = value;
}
}
/// Field number for the "allow_soft_placement" field.
public const int AllowSoftPlacementFieldNumber = 7;
private bool allowSoftPlacement_;
///
/// Whether soft placement is allowed. If allow_soft_placement is true,
/// an op will be placed on CPU if
/// 1. there's no GPU implementation for the OP
/// or
/// 2. no GPU devices are known or registered
/// or
/// 3. need to co-locate with reftype input(s) which are from CPU.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool AllowSoftPlacement {
get { return allowSoftPlacement_; }
set {
allowSoftPlacement_ = value;
}
}
/// Field number for the "log_device_placement" field.
public const int LogDevicePlacementFieldNumber = 8;
private bool logDevicePlacement_;
///
/// Whether device placements should be logged.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool LogDevicePlacement {
get { return logDevicePlacement_; }
set {
logDevicePlacement_ = value;
}
}
/// Field number for the "graph_options" field.
public const int GraphOptionsFieldNumber = 10;
private global::Tensorflow.GraphOptions graphOptions_;
///
/// Options that apply to all graphs.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.GraphOptions GraphOptions {
get { return graphOptions_; }
set {
graphOptions_ = value;
}
}
/// Field number for the "operation_timeout_in_ms" field.
public const int OperationTimeoutInMsFieldNumber = 11;
private long operationTimeoutInMs_;
///
/// Global timeout for all blocking operations in this session. If non-zero,
/// and not overridden on a per-operation basis, this value will be used as the
/// deadline for all blocking operations.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public long OperationTimeoutInMs {
get { return operationTimeoutInMs_; }
set {
operationTimeoutInMs_ = value;
}
}
/// Field number for the "rpc_options" field.
public const int RpcOptionsFieldNumber = 13;
private global::Tensorflow.RPCOptions rpcOptions_;
///
/// Options that apply when this session uses the distributed runtime.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.RPCOptions RpcOptions {
get { return rpcOptions_; }
set {
rpcOptions_ = value;
}
}
/// Field number for the "cluster_def" field.
public const int ClusterDefFieldNumber = 14;
private global::Tensorflow.ClusterDef clusterDef_;
///
/// Optional list of all workers to use in this session.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.ClusterDef ClusterDef {
get { return clusterDef_; }
set {
clusterDef_ = value;
}
}
/// Field number for the "isolate_session_state" field.
public const int IsolateSessionStateFieldNumber = 15;
private bool isolateSessionState_;
///
/// If true, any resources such as Variables used in the session will not be
/// shared with other sessions. However, when clusterspec propagation is
/// enabled, this field is ignored and sessions are always isolated.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool IsolateSessionState {
get { return isolateSessionState_; }
set {
isolateSessionState_ = value;
}
}
/// Field number for the "share_cluster_devices_in_session" field.
public const int ShareClusterDevicesInSessionFieldNumber = 17;
private bool shareClusterDevicesInSession_;
///
/// When true, WorkerSessions are created with device attributes from the
/// full cluster.
/// This is helpful when a worker wants to partition a graph
/// (for example during a PartitionedCallOp).
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool ShareClusterDevicesInSession {
get { return shareClusterDevicesInSession_; }
set {
shareClusterDevicesInSession_ = value;
}
}
/// Field number for the "experimental" field.
public const int ExperimentalFieldNumber = 16;
private global::Tensorflow.ConfigProto.Types.Experimental experimental_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.ConfigProto.Types.Experimental Experimental {
get { return experimental_; }
set {
experimental_ = value;
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as ConfigProto);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(ConfigProto other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if (!DeviceCount.Equals(other.DeviceCount)) return false;
if (IntraOpParallelismThreads != other.IntraOpParallelismThreads) return false;
if (InterOpParallelismThreads != other.InterOpParallelismThreads) return false;
if (UsePerSessionThreads != other.UsePerSessionThreads) return false;
if(!sessionInterOpThreadPool_.Equals(other.sessionInterOpThreadPool_)) return false;
if (PlacementPeriod != other.PlacementPeriod) return false;
if(!deviceFilters_.Equals(other.deviceFilters_)) return false;
if (!object.Equals(GpuOptions, other.GpuOptions)) return false;
if (AllowSoftPlacement != other.AllowSoftPlacement) return false;
if (LogDevicePlacement != other.LogDevicePlacement) return false;
if (!object.Equals(GraphOptions, other.GraphOptions)) return false;
if (OperationTimeoutInMs != other.OperationTimeoutInMs) return false;
if (!object.Equals(RpcOptions, other.RpcOptions)) return false;
if (!object.Equals(ClusterDef, other.ClusterDef)) return false;
if (IsolateSessionState != other.IsolateSessionState) return false;
if (ShareClusterDevicesInSession != other.ShareClusterDevicesInSession) return false;
if (!object.Equals(Experimental, other.Experimental)) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
hash ^= DeviceCount.GetHashCode();
if (IntraOpParallelismThreads != 0) hash ^= IntraOpParallelismThreads.GetHashCode();
if (InterOpParallelismThreads != 0) hash ^= InterOpParallelismThreads.GetHashCode();
if (UsePerSessionThreads != false) hash ^= UsePerSessionThreads.GetHashCode();
hash ^= sessionInterOpThreadPool_.GetHashCode();
if (PlacementPeriod != 0) hash ^= PlacementPeriod.GetHashCode();
hash ^= deviceFilters_.GetHashCode();
if (gpuOptions_ != null) hash ^= GpuOptions.GetHashCode();
if (AllowSoftPlacement != false) hash ^= AllowSoftPlacement.GetHashCode();
if (LogDevicePlacement != false) hash ^= LogDevicePlacement.GetHashCode();
if (graphOptions_ != null) hash ^= GraphOptions.GetHashCode();
if (OperationTimeoutInMs != 0L) hash ^= OperationTimeoutInMs.GetHashCode();
if (rpcOptions_ != null) hash ^= RpcOptions.GetHashCode();
if (clusterDef_ != null) hash ^= ClusterDef.GetHashCode();
if (IsolateSessionState != false) hash ^= IsolateSessionState.GetHashCode();
if (ShareClusterDevicesInSession != false) hash ^= ShareClusterDevicesInSession.GetHashCode();
if (experimental_ != null) hash ^= Experimental.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
deviceCount_.WriteTo(output, _map_deviceCount_codec);
if (IntraOpParallelismThreads != 0) {
output.WriteRawTag(16);
output.WriteInt32(IntraOpParallelismThreads);
}
if (PlacementPeriod != 0) {
output.WriteRawTag(24);
output.WriteInt32(PlacementPeriod);
}
deviceFilters_.WriteTo(output, _repeated_deviceFilters_codec);
if (InterOpParallelismThreads != 0) {
output.WriteRawTag(40);
output.WriteInt32(InterOpParallelismThreads);
}
if (gpuOptions_ != null) {
output.WriteRawTag(50);
output.WriteMessage(GpuOptions);
}
if (AllowSoftPlacement != false) {
output.WriteRawTag(56);
output.WriteBool(AllowSoftPlacement);
}
if (LogDevicePlacement != false) {
output.WriteRawTag(64);
output.WriteBool(LogDevicePlacement);
}
if (UsePerSessionThreads != false) {
output.WriteRawTag(72);
output.WriteBool(UsePerSessionThreads);
}
if (graphOptions_ != null) {
output.WriteRawTag(82);
output.WriteMessage(GraphOptions);
}
if (OperationTimeoutInMs != 0L) {
output.WriteRawTag(88);
output.WriteInt64(OperationTimeoutInMs);
}
sessionInterOpThreadPool_.WriteTo(output, _repeated_sessionInterOpThreadPool_codec);
if (rpcOptions_ != null) {
output.WriteRawTag(106);
output.WriteMessage(RpcOptions);
}
if (clusterDef_ != null) {
output.WriteRawTag(114);
output.WriteMessage(ClusterDef);
}
if (IsolateSessionState != false) {
output.WriteRawTag(120);
output.WriteBool(IsolateSessionState);
}
if (experimental_ != null) {
output.WriteRawTag(130, 1);
output.WriteMessage(Experimental);
}
if (ShareClusterDevicesInSession != false) {
output.WriteRawTag(136, 1);
output.WriteBool(ShareClusterDevicesInSession);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
deviceCount_.WriteTo(ref output, _map_deviceCount_codec);
if (IntraOpParallelismThreads != 0) {
output.WriteRawTag(16);
output.WriteInt32(IntraOpParallelismThreads);
}
if (PlacementPeriod != 0) {
output.WriteRawTag(24);
output.WriteInt32(PlacementPeriod);
}
deviceFilters_.WriteTo(ref output, _repeated_deviceFilters_codec);
if (InterOpParallelismThreads != 0) {
output.WriteRawTag(40);
output.WriteInt32(InterOpParallelismThreads);
}
if (gpuOptions_ != null) {
output.WriteRawTag(50);
output.WriteMessage(GpuOptions);
}
if (AllowSoftPlacement != false) {
output.WriteRawTag(56);
output.WriteBool(AllowSoftPlacement);
}
if (LogDevicePlacement != false) {
output.WriteRawTag(64);
output.WriteBool(LogDevicePlacement);
}
if (UsePerSessionThreads != false) {
output.WriteRawTag(72);
output.WriteBool(UsePerSessionThreads);
}
if (graphOptions_ != null) {
output.WriteRawTag(82);
output.WriteMessage(GraphOptions);
}
if (OperationTimeoutInMs != 0L) {
output.WriteRawTag(88);
output.WriteInt64(OperationTimeoutInMs);
}
sessionInterOpThreadPool_.WriteTo(ref output, _repeated_sessionInterOpThreadPool_codec);
if (rpcOptions_ != null) {
output.WriteRawTag(106);
output.WriteMessage(RpcOptions);
}
if (clusterDef_ != null) {
output.WriteRawTag(114);
output.WriteMessage(ClusterDef);
}
if (IsolateSessionState != false) {
output.WriteRawTag(120);
output.WriteBool(IsolateSessionState);
}
if (experimental_ != null) {
output.WriteRawTag(130, 1);
output.WriteMessage(Experimental);
}
if (ShareClusterDevicesInSession != false) {
output.WriteRawTag(136, 1);
output.WriteBool(ShareClusterDevicesInSession);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
size += deviceCount_.CalculateSize(_map_deviceCount_codec);
if (IntraOpParallelismThreads != 0) {
size += 1 + pb::CodedOutputStream.ComputeInt32Size(IntraOpParallelismThreads);
}
if (InterOpParallelismThreads != 0) {
size += 1 + pb::CodedOutputStream.ComputeInt32Size(InterOpParallelismThreads);
}
if (UsePerSessionThreads != false) {
size += 1 + 1;
}
size += sessionInterOpThreadPool_.CalculateSize(_repeated_sessionInterOpThreadPool_codec);
if (PlacementPeriod != 0) {
size += 1 + pb::CodedOutputStream.ComputeInt32Size(PlacementPeriod);
}
size += deviceFilters_.CalculateSize(_repeated_deviceFilters_codec);
if (gpuOptions_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(GpuOptions);
}
if (AllowSoftPlacement != false) {
size += 1 + 1;
}
if (LogDevicePlacement != false) {
size += 1 + 1;
}
if (graphOptions_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(GraphOptions);
}
if (OperationTimeoutInMs != 0L) {
size += 1 + pb::CodedOutputStream.ComputeInt64Size(OperationTimeoutInMs);
}
if (rpcOptions_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(RpcOptions);
}
if (clusterDef_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(ClusterDef);
}
if (IsolateSessionState != false) {
size += 1 + 1;
}
if (ShareClusterDevicesInSession != false) {
size += 2 + 1;
}
if (experimental_ != null) {
size += 2 + pb::CodedOutputStream.ComputeMessageSize(Experimental);
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(ConfigProto other) {
if (other == null) {
return;
}
deviceCount_.Add(other.deviceCount_);
if (other.IntraOpParallelismThreads != 0) {
IntraOpParallelismThreads = other.IntraOpParallelismThreads;
}
if (other.InterOpParallelismThreads != 0) {
InterOpParallelismThreads = other.InterOpParallelismThreads;
}
if (other.UsePerSessionThreads != false) {
UsePerSessionThreads = other.UsePerSessionThreads;
}
sessionInterOpThreadPool_.Add(other.sessionInterOpThreadPool_);
if (other.PlacementPeriod != 0) {
PlacementPeriod = other.PlacementPeriod;
}
deviceFilters_.Add(other.deviceFilters_);
if (other.gpuOptions_ != null) {
if (gpuOptions_ == null) {
GpuOptions = new global::Tensorflow.GPUOptions();
}
GpuOptions.MergeFrom(other.GpuOptions);
}
if (other.AllowSoftPlacement != false) {
AllowSoftPlacement = other.AllowSoftPlacement;
}
if (other.LogDevicePlacement != false) {
LogDevicePlacement = other.LogDevicePlacement;
}
if (other.graphOptions_ != null) {
if (graphOptions_ == null) {
GraphOptions = new global::Tensorflow.GraphOptions();
}
GraphOptions.MergeFrom(other.GraphOptions);
}
if (other.OperationTimeoutInMs != 0L) {
OperationTimeoutInMs = other.OperationTimeoutInMs;
}
if (other.rpcOptions_ != null) {
if (rpcOptions_ == null) {
RpcOptions = new global::Tensorflow.RPCOptions();
}
RpcOptions.MergeFrom(other.RpcOptions);
}
if (other.clusterDef_ != null) {
if (clusterDef_ == null) {
ClusterDef = new global::Tensorflow.ClusterDef();
}
ClusterDef.MergeFrom(other.ClusterDef);
}
if (other.IsolateSessionState != false) {
IsolateSessionState = other.IsolateSessionState;
}
if (other.ShareClusterDevicesInSession != false) {
ShareClusterDevicesInSession = other.ShareClusterDevicesInSession;
}
if (other.experimental_ != null) {
if (experimental_ == null) {
Experimental = new global::Tensorflow.ConfigProto.Types.Experimental();
}
Experimental.MergeFrom(other.Experimental);
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 10: {
deviceCount_.AddEntriesFrom(input, _map_deviceCount_codec);
break;
}
case 16: {
IntraOpParallelismThreads = input.ReadInt32();
break;
}
case 24: {
PlacementPeriod = input.ReadInt32();
break;
}
case 34: {
deviceFilters_.AddEntriesFrom(input, _repeated_deviceFilters_codec);
break;
}
case 40: {
InterOpParallelismThreads = input.ReadInt32();
break;
}
case 50: {
if (gpuOptions_ == null) {
GpuOptions = new global::Tensorflow.GPUOptions();
}
input.ReadMessage(GpuOptions);
break;
}
case 56: {
AllowSoftPlacement = input.ReadBool();
break;
}
case 64: {
LogDevicePlacement = input.ReadBool();
break;
}
case 72: {
UsePerSessionThreads = input.ReadBool();
break;
}
case 82: {
if (graphOptions_ == null) {
GraphOptions = new global::Tensorflow.GraphOptions();
}
input.ReadMessage(GraphOptions);
break;
}
case 88: {
OperationTimeoutInMs = input.ReadInt64();
break;
}
case 98: {
sessionInterOpThreadPool_.AddEntriesFrom(input, _repeated_sessionInterOpThreadPool_codec);
break;
}
case 106: {
if (rpcOptions_ == null) {
RpcOptions = new global::Tensorflow.RPCOptions();
}
input.ReadMessage(RpcOptions);
break;
}
case 114: {
if (clusterDef_ == null) {
ClusterDef = new global::Tensorflow.ClusterDef();
}
input.ReadMessage(ClusterDef);
break;
}
case 120: {
IsolateSessionState = input.ReadBool();
break;
}
case 130: {
if (experimental_ == null) {
Experimental = new global::Tensorflow.ConfigProto.Types.Experimental();
}
input.ReadMessage(Experimental);
break;
}
case 136: {
ShareClusterDevicesInSession = input.ReadBool();
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 10: {
deviceCount_.AddEntriesFrom(ref input, _map_deviceCount_codec);
break;
}
case 16: {
IntraOpParallelismThreads = input.ReadInt32();
break;
}
case 24: {
PlacementPeriod = input.ReadInt32();
break;
}
case 34: {
deviceFilters_.AddEntriesFrom(ref input, _repeated_deviceFilters_codec);
break;
}
case 40: {
InterOpParallelismThreads = input.ReadInt32();
break;
}
case 50: {
if (gpuOptions_ == null) {
GpuOptions = new global::Tensorflow.GPUOptions();
}
input.ReadMessage(GpuOptions);
break;
}
case 56: {
AllowSoftPlacement = input.ReadBool();
break;
}
case 64: {
LogDevicePlacement = input.ReadBool();
break;
}
case 72: {
UsePerSessionThreads = input.ReadBool();
break;
}
case 82: {
if (graphOptions_ == null) {
GraphOptions = new global::Tensorflow.GraphOptions();
}
input.ReadMessage(GraphOptions);
break;
}
case 88: {
OperationTimeoutInMs = input.ReadInt64();
break;
}
case 98: {
sessionInterOpThreadPool_.AddEntriesFrom(ref input, _repeated_sessionInterOpThreadPool_codec);
break;
}
case 106: {
if (rpcOptions_ == null) {
RpcOptions = new global::Tensorflow.RPCOptions();
}
input.ReadMessage(RpcOptions);
break;
}
case 114: {
if (clusterDef_ == null) {
ClusterDef = new global::Tensorflow.ClusterDef();
}
input.ReadMessage(ClusterDef);
break;
}
case 120: {
IsolateSessionState = input.ReadBool();
break;
}
case 130: {
if (experimental_ == null) {
Experimental = new global::Tensorflow.ConfigProto.Types.Experimental();
}
input.ReadMessage(Experimental);
break;
}
case 136: {
ShareClusterDevicesInSession = input.ReadBool();
break;
}
}
}
}
#endif
#region Nested types
/// Container for nested types declared in the ConfigProto message type.
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static partial class Types {
///
/// Everything inside Experimental is subject to change and is not subject
/// to API stability guarantees in
/// https://www.tensorflow.org/guide/version_compat.
///
public sealed partial class Experimental : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Experimental());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.ConfigProto.Descriptor.NestedTypes[1]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public Experimental() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public Experimental(Experimental other) : this() {
collectiveGroupLeader_ = other.collectiveGroupLeader_;
executorType_ = other.executorType_;
recvBufMaxChunk_ = other.recvBufMaxChunk_;
useNumaAffinity_ = other.useNumaAffinity_;
collectiveDeterministicSequentialExecution_ = other.collectiveDeterministicSequentialExecution_;
collectiveNccl_ = other.collectiveNccl_;
shareSessionStateInClusterspecPropagation_ = other.shareSessionStateInClusterspecPropagation_;
disableThreadSpinning_ = other.disableThreadSpinning_;
shareClusterDevicesInSession_ = other.shareClusterDevicesInSession_;
sessionMetadata_ = other.sessionMetadata_ != null ? other.sessionMetadata_.Clone() : null;
optimizeForStaticGraph_ = other.optimizeForStaticGraph_;
enableMlirBridge_ = other.enableMlirBridge_;
mlirBridgeRollout_ = other.mlirBridgeRollout_;
enableMlirGraphOptimization_ = other.enableMlirGraphOptimization_;
disableOutputPartitionGraphs_ = other.disableOutputPartitionGraphs_;
xlaFusionAutotunerThresh_ = other.xlaFusionAutotunerThresh_;
useTfrt_ = other.useTfrt_;
disableFunctionalOpsLowering_ = other.disableFunctionalOpsLowering_;
xlaPreferSingleGraphCluster_ = other.xlaPreferSingleGraphCluster_;
coordinationConfig_ = other.coordinationConfig_ != null ? other.coordinationConfig_.Clone() : null;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public Experimental Clone() {
return new Experimental(this);
}
/// Field number for the "collective_group_leader" field.
public const int CollectiveGroupLeaderFieldNumber = 1;
private string collectiveGroupLeader_ = "";
///
/// Task name for group resolution.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public string CollectiveGroupLeader {
get { return collectiveGroupLeader_; }
set {
collectiveGroupLeader_ = pb::ProtoPreconditions.CheckNotNull(value, "value");
}
}
/// Field number for the "executor_type" field.
public const int ExecutorTypeFieldNumber = 3;
private string executorType_ = "";
///
/// Which executor to use, the default executor will be used
/// if it is an empty string or "DEFAULT"
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public string ExecutorType {
get { return executorType_; }
set {
executorType_ = pb::ProtoPreconditions.CheckNotNull(value, "value");
}
}
/// Field number for the "recv_buf_max_chunk" field.
public const int RecvBufMaxChunkFieldNumber = 4;
private int recvBufMaxChunk_;
///
/// Guidance to formatting of large RecvBuf fields for transfer.
/// Any positive value sets the max chunk size. 0 defaults to 4096.
/// Any negative value indicates no max, i.e. one chunk only.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int RecvBufMaxChunk {
get { return recvBufMaxChunk_; }
set {
recvBufMaxChunk_ = value;
}
}
/// Field number for the "use_numa_affinity" field.
public const int UseNumaAffinityFieldNumber = 5;
private bool useNumaAffinity_;
///
/// If true, and supported by the platform, the runtime will attempt to
/// use NUMA affinity where applicable. One consequence will be the
/// existence of as many CPU devices as there are available NUMA nodes.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool UseNumaAffinity {
get { return useNumaAffinity_; }
set {
useNumaAffinity_ = value;
}
}
/// Field number for the "collective_deterministic_sequential_execution" field.
public const int CollectiveDeterministicSequentialExecutionFieldNumber = 6;
private bool collectiveDeterministicSequentialExecution_;
///
/// If true, make collective op execution order sequential and deterministic
/// for potentially concurrent collective instances.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool CollectiveDeterministicSequentialExecution {
get { return collectiveDeterministicSequentialExecution_; }
set {
collectiveDeterministicSequentialExecution_ = value;
}
}
/// Field number for the "collective_nccl" field.
public const int CollectiveNcclFieldNumber = 7;
private bool collectiveNccl_;
///
/// If true, use NCCL for CollectiveOps. This feature is highly
/// experimental.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool CollectiveNccl {
get { return collectiveNccl_; }
set {
collectiveNccl_ = value;
}
}
/// Field number for the "share_session_state_in_clusterspec_propagation" field.
public const int ShareSessionStateInClusterspecPropagationFieldNumber = 8;
private bool shareSessionStateInClusterspecPropagation_;
///
/// In the following, session state means the value of a variable, elements
/// in a hash table, or any other resource, accessible by worker sessions
/// held by a TF server.
///
/// When ClusterSpec propagation is enabled, the value of
/// isolate_session_state is ignored when deciding whether to share session
/// states in a TF server (for backwards compatibility reasons).
/// - If share_session_state_in_clusterspec_propagation is true, the session
/// states are shared.
/// - If share_session_state_in_clusterspec_propagation is false, session
/// states are isolated.
///
/// When clusterspec propagation is not used, the value of
/// share_session_state_in_clusterspec_propagation is ignored when deciding
/// whether to share session states in a TF server.
/// - If isolate_session_state is true, session states are isolated.
/// - If isolate_session_state is false, session states are shared.
///
/// TODO(b/129330037): Add a single API that consistently treats
/// isolate_session_state and ClusterSpec propagation.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool ShareSessionStateInClusterspecPropagation {
get { return shareSessionStateInClusterspecPropagation_; }
set {
shareSessionStateInClusterspecPropagation_ = value;
}
}
/// Field number for the "disable_thread_spinning" field.
public const int DisableThreadSpinningFieldNumber = 9;
private bool disableThreadSpinning_;
///
/// If using a direct session, disable spinning while waiting for work in
/// the thread pool. This may result in higher latency for completing ops,
/// but in the case where there is a lot of spinning may result in lower
/// CPU usage.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool DisableThreadSpinning {
get { return disableThreadSpinning_; }
set {
disableThreadSpinning_ = value;
}
}
/// Field number for the "share_cluster_devices_in_session" field.
public const int ShareClusterDevicesInSessionFieldNumber = 10;
private bool shareClusterDevicesInSession_;
///
/// This was promoted to a non-experimental API. Please use
/// ConfigProto.share_cluster_devices_in_session instead.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool ShareClusterDevicesInSession {
get { return shareClusterDevicesInSession_; }
set {
shareClusterDevicesInSession_ = value;
}
}
/// Field number for the "session_metadata" field.
public const int SessionMetadataFieldNumber = 11;
private global::Tensorflow.SessionMetadata sessionMetadata_;
///
/// Metadata about the session.
///
/// If set, this can be used by the runtime and the Ops for debugging,
/// monitoring, etc.
///
/// NOTE: This is currently used and propagated only by the direct session.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.SessionMetadata SessionMetadata {
get { return sessionMetadata_; }
set {
sessionMetadata_ = value;
}
}
/// Field number for the "optimize_for_static_graph" field.
public const int OptimizeForStaticGraphFieldNumber = 12;
private bool optimizeForStaticGraph_;
///
/// If true, the session may treat the graph as being static for optimization
/// purposes.
///
/// If this option is set to true when a session is created, the full
/// GraphDef must be passed in a single call to Session::Create(), and
/// Session::Extend() may not be supported.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool OptimizeForStaticGraph {
get { return optimizeForStaticGraph_; }
set {
optimizeForStaticGraph_ = value;
}
}
/// Field number for the "enable_mlir_bridge" field.
public const int EnableMlirBridgeFieldNumber = 13;
private bool enableMlirBridge_;
///
/// This field will eventually be deprecated and replaced by
/// mlir_bridge_rollout (b/166038521).
///
/// Whether to enable the MLIR-based TF->XLA bridge.
///
/// This is a replacement to the existing bridge, and not ready for
/// production usage yet.
/// If this option is set to true when a session is created, MLIR is used to
/// perform the set of graph transformations to put the graph in a form that
/// can be executed with delegation of some computations to an accelerator.
/// This builds on the model of XLA where a subset of the graph is
/// encapsulated and attached to a "compile" operation, whose result is fed
/// to an "execute" operation. The kernel for these operations is responsible
/// to lower the encapsulated graph to a particular device.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool EnableMlirBridge {
get { return enableMlirBridge_; }
set {
enableMlirBridge_ = value;
}
}
/// Field number for the "mlir_bridge_rollout" field.
public const int MlirBridgeRolloutFieldNumber = 17;
private global::Tensorflow.ConfigProto.Types.Experimental.Types.MlirBridgeRollout mlirBridgeRollout_ = global::Tensorflow.ConfigProto.Types.Experimental.Types.MlirBridgeRollout.Unspecified;
///
/// This field is underdevelopment, for now use enable_mlir_bridge
/// (b/166038521).
///
/// Whether to enable the MLIR-based TF->XLA bridge.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.ConfigProto.Types.Experimental.Types.MlirBridgeRollout MlirBridgeRollout {
get { return mlirBridgeRollout_; }
set {
mlirBridgeRollout_ = value;
}
}
/// Field number for the "enable_mlir_graph_optimization" field.
public const int EnableMlirGraphOptimizationFieldNumber = 16;
private bool enableMlirGraphOptimization_;
///
/// Whether to enable the MLIR-based Graph optimizations.
///
/// This will become a part of standard Tensorflow graph optimization
/// pipeline, currently this is only used for gradual migration and testing
/// new passes that are replacing existing optimizations in Grappler.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool EnableMlirGraphOptimization {
get { return enableMlirGraphOptimization_; }
set {
enableMlirGraphOptimization_ = value;
}
}
/// Field number for the "disable_output_partition_graphs" field.
public const int DisableOutputPartitionGraphsFieldNumber = 14;
private bool disableOutputPartitionGraphs_;
///
/// If true, the session will not store an additional copy of the graph for
/// each subgraph.
///
/// If this option is set to true when a session is created, the
/// `RunOptions.output_partition_graphs` options must not be set.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool DisableOutputPartitionGraphs {
get { return disableOutputPartitionGraphs_; }
set {
disableOutputPartitionGraphs_ = value;
}
}
/// Field number for the "xla_fusion_autotuner_thresh" field.
public const int XlaFusionAutotunerThreshFieldNumber = 15;
private long xlaFusionAutotunerThresh_;
///
/// Minimum number of batches run through the XLA graph before XLA fusion
/// autotuner is enabled. Default value of zero disables the autotuner.
///
/// The XLA fusion autotuner can improve performance by executing a heuristic
/// search on the compiler parameters.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public long XlaFusionAutotunerThresh {
get { return xlaFusionAutotunerThresh_; }
set {
xlaFusionAutotunerThresh_ = value;
}
}
/// Field number for the "use_tfrt" field.
public const int UseTfrtFieldNumber = 18;
private bool useTfrt_;
///
/// Whether runtime execution uses TFRT.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool UseTfrt {
get { return useTfrt_; }
set {
useTfrt_ = value;
}
}
/// Field number for the "disable_functional_ops_lowering" field.
public const int DisableFunctionalOpsLoweringFieldNumber = 21;
private bool disableFunctionalOpsLowering_;
///
/// Whether functional control flow op lowering should be disabled. This is
/// useful when executing within a portable runtime where control flow op
/// kernels may not be loaded due to selective registration.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool DisableFunctionalOpsLowering {
get { return disableFunctionalOpsLowering_; }
set {
disableFunctionalOpsLowering_ = value;
}
}
/// Field number for the "xla_prefer_single_graph_cluster" field.
public const int XlaPreferSingleGraphClusterFieldNumber = 22;
private bool xlaPreferSingleGraphCluster_;
///
/// Provides a hint to XLA auto clustering to prefer forming a single large
/// cluster that encompases most of the graph.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool XlaPreferSingleGraphCluster {
get { return xlaPreferSingleGraphCluster_; }
set {
xlaPreferSingleGraphCluster_ = value;
}
}
/// Field number for the "coordination_config" field.
public const int CoordinationConfigFieldNumber = 23;
private global::Tensorflow.CoordinationServiceConfig coordinationConfig_;
///
/// Distributed coordination service configurations.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.CoordinationServiceConfig CoordinationConfig {
get { return coordinationConfig_; }
set {
coordinationConfig_ = value;
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as Experimental);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(Experimental other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if (CollectiveGroupLeader != other.CollectiveGroupLeader) return false;
if (ExecutorType != other.ExecutorType) return false;
if (RecvBufMaxChunk != other.RecvBufMaxChunk) return false;
if (UseNumaAffinity != other.UseNumaAffinity) return false;
if (CollectiveDeterministicSequentialExecution != other.CollectiveDeterministicSequentialExecution) return false;
if (CollectiveNccl != other.CollectiveNccl) return false;
if (ShareSessionStateInClusterspecPropagation != other.ShareSessionStateInClusterspecPropagation) return false;
if (DisableThreadSpinning != other.DisableThreadSpinning) return false;
if (ShareClusterDevicesInSession != other.ShareClusterDevicesInSession) return false;
if (!object.Equals(SessionMetadata, other.SessionMetadata)) return false;
if (OptimizeForStaticGraph != other.OptimizeForStaticGraph) return false;
if (EnableMlirBridge != other.EnableMlirBridge) return false;
if (MlirBridgeRollout != other.MlirBridgeRollout) return false;
if (EnableMlirGraphOptimization != other.EnableMlirGraphOptimization) return false;
if (DisableOutputPartitionGraphs != other.DisableOutputPartitionGraphs) return false;
if (XlaFusionAutotunerThresh != other.XlaFusionAutotunerThresh) return false;
if (UseTfrt != other.UseTfrt) return false;
if (DisableFunctionalOpsLowering != other.DisableFunctionalOpsLowering) return false;
if (XlaPreferSingleGraphCluster != other.XlaPreferSingleGraphCluster) return false;
if (!object.Equals(CoordinationConfig, other.CoordinationConfig)) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
if (CollectiveGroupLeader.Length != 0) hash ^= CollectiveGroupLeader.GetHashCode();
if (ExecutorType.Length != 0) hash ^= ExecutorType.GetHashCode();
if (RecvBufMaxChunk != 0) hash ^= RecvBufMaxChunk.GetHashCode();
if (UseNumaAffinity != false) hash ^= UseNumaAffinity.GetHashCode();
if (CollectiveDeterministicSequentialExecution != false) hash ^= CollectiveDeterministicSequentialExecution.GetHashCode();
if (CollectiveNccl != false) hash ^= CollectiveNccl.GetHashCode();
if (ShareSessionStateInClusterspecPropagation != false) hash ^= ShareSessionStateInClusterspecPropagation.GetHashCode();
if (DisableThreadSpinning != false) hash ^= DisableThreadSpinning.GetHashCode();
if (ShareClusterDevicesInSession != false) hash ^= ShareClusterDevicesInSession.GetHashCode();
if (sessionMetadata_ != null) hash ^= SessionMetadata.GetHashCode();
if (OptimizeForStaticGraph != false) hash ^= OptimizeForStaticGraph.GetHashCode();
if (EnableMlirBridge != false) hash ^= EnableMlirBridge.GetHashCode();
if (MlirBridgeRollout != global::Tensorflow.ConfigProto.Types.Experimental.Types.MlirBridgeRollout.Unspecified) hash ^= MlirBridgeRollout.GetHashCode();
if (EnableMlirGraphOptimization != false) hash ^= EnableMlirGraphOptimization.GetHashCode();
if (DisableOutputPartitionGraphs != false) hash ^= DisableOutputPartitionGraphs.GetHashCode();
if (XlaFusionAutotunerThresh != 0L) hash ^= XlaFusionAutotunerThresh.GetHashCode();
if (UseTfrt != false) hash ^= UseTfrt.GetHashCode();
if (DisableFunctionalOpsLowering != false) hash ^= DisableFunctionalOpsLowering.GetHashCode();
if (XlaPreferSingleGraphCluster != false) hash ^= XlaPreferSingleGraphCluster.GetHashCode();
if (coordinationConfig_ != null) hash ^= CoordinationConfig.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
if (CollectiveGroupLeader.Length != 0) {
output.WriteRawTag(10);
output.WriteString(CollectiveGroupLeader);
}
if (ExecutorType.Length != 0) {
output.WriteRawTag(26);
output.WriteString(ExecutorType);
}
if (RecvBufMaxChunk != 0) {
output.WriteRawTag(32);
output.WriteInt32(RecvBufMaxChunk);
}
if (UseNumaAffinity != false) {
output.WriteRawTag(40);
output.WriteBool(UseNumaAffinity);
}
if (CollectiveDeterministicSequentialExecution != false) {
output.WriteRawTag(48);
output.WriteBool(CollectiveDeterministicSequentialExecution);
}
if (CollectiveNccl != false) {
output.WriteRawTag(56);
output.WriteBool(CollectiveNccl);
}
if (ShareSessionStateInClusterspecPropagation != false) {
output.WriteRawTag(64);
output.WriteBool(ShareSessionStateInClusterspecPropagation);
}
if (DisableThreadSpinning != false) {
output.WriteRawTag(72);
output.WriteBool(DisableThreadSpinning);
}
if (ShareClusterDevicesInSession != false) {
output.WriteRawTag(80);
output.WriteBool(ShareClusterDevicesInSession);
}
if (sessionMetadata_ != null) {
output.WriteRawTag(90);
output.WriteMessage(SessionMetadata);
}
if (OptimizeForStaticGraph != false) {
output.WriteRawTag(96);
output.WriteBool(OptimizeForStaticGraph);
}
if (EnableMlirBridge != false) {
output.WriteRawTag(104);
output.WriteBool(EnableMlirBridge);
}
if (DisableOutputPartitionGraphs != false) {
output.WriteRawTag(112);
output.WriteBool(DisableOutputPartitionGraphs);
}
if (XlaFusionAutotunerThresh != 0L) {
output.WriteRawTag(120);
output.WriteInt64(XlaFusionAutotunerThresh);
}
if (EnableMlirGraphOptimization != false) {
output.WriteRawTag(128, 1);
output.WriteBool(EnableMlirGraphOptimization);
}
if (MlirBridgeRollout != global::Tensorflow.ConfigProto.Types.Experimental.Types.MlirBridgeRollout.Unspecified) {
output.WriteRawTag(136, 1);
output.WriteEnum((int) MlirBridgeRollout);
}
if (UseTfrt != false) {
output.WriteRawTag(144, 1);
output.WriteBool(UseTfrt);
}
if (DisableFunctionalOpsLowering != false) {
output.WriteRawTag(168, 1);
output.WriteBool(DisableFunctionalOpsLowering);
}
if (XlaPreferSingleGraphCluster != false) {
output.WriteRawTag(176, 1);
output.WriteBool(XlaPreferSingleGraphCluster);
}
if (coordinationConfig_ != null) {
output.WriteRawTag(186, 1);
output.WriteMessage(CoordinationConfig);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
if (CollectiveGroupLeader.Length != 0) {
output.WriteRawTag(10);
output.WriteString(CollectiveGroupLeader);
}
if (ExecutorType.Length != 0) {
output.WriteRawTag(26);
output.WriteString(ExecutorType);
}
if (RecvBufMaxChunk != 0) {
output.WriteRawTag(32);
output.WriteInt32(RecvBufMaxChunk);
}
if (UseNumaAffinity != false) {
output.WriteRawTag(40);
output.WriteBool(UseNumaAffinity);
}
if (CollectiveDeterministicSequentialExecution != false) {
output.WriteRawTag(48);
output.WriteBool(CollectiveDeterministicSequentialExecution);
}
if (CollectiveNccl != false) {
output.WriteRawTag(56);
output.WriteBool(CollectiveNccl);
}
if (ShareSessionStateInClusterspecPropagation != false) {
output.WriteRawTag(64);
output.WriteBool(ShareSessionStateInClusterspecPropagation);
}
if (DisableThreadSpinning != false) {
output.WriteRawTag(72);
output.WriteBool(DisableThreadSpinning);
}
if (ShareClusterDevicesInSession != false) {
output.WriteRawTag(80);
output.WriteBool(ShareClusterDevicesInSession);
}
if (sessionMetadata_ != null) {
output.WriteRawTag(90);
output.WriteMessage(SessionMetadata);
}
if (OptimizeForStaticGraph != false) {
output.WriteRawTag(96);
output.WriteBool(OptimizeForStaticGraph);
}
if (EnableMlirBridge != false) {
output.WriteRawTag(104);
output.WriteBool(EnableMlirBridge);
}
if (DisableOutputPartitionGraphs != false) {
output.WriteRawTag(112);
output.WriteBool(DisableOutputPartitionGraphs);
}
if (XlaFusionAutotunerThresh != 0L) {
output.WriteRawTag(120);
output.WriteInt64(XlaFusionAutotunerThresh);
}
if (EnableMlirGraphOptimization != false) {
output.WriteRawTag(128, 1);
output.WriteBool(EnableMlirGraphOptimization);
}
if (MlirBridgeRollout != global::Tensorflow.ConfigProto.Types.Experimental.Types.MlirBridgeRollout.Unspecified) {
output.WriteRawTag(136, 1);
output.WriteEnum((int) MlirBridgeRollout);
}
if (UseTfrt != false) {
output.WriteRawTag(144, 1);
output.WriteBool(UseTfrt);
}
if (DisableFunctionalOpsLowering != false) {
output.WriteRawTag(168, 1);
output.WriteBool(DisableFunctionalOpsLowering);
}
if (XlaPreferSingleGraphCluster != false) {
output.WriteRawTag(176, 1);
output.WriteBool(XlaPreferSingleGraphCluster);
}
if (coordinationConfig_ != null) {
output.WriteRawTag(186, 1);
output.WriteMessage(CoordinationConfig);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
if (CollectiveGroupLeader.Length != 0) {
size += 1 + pb::CodedOutputStream.ComputeStringSize(CollectiveGroupLeader);
}
if (ExecutorType.Length != 0) {
size += 1 + pb::CodedOutputStream.ComputeStringSize(ExecutorType);
}
if (RecvBufMaxChunk != 0) {
size += 1 + pb::CodedOutputStream.ComputeInt32Size(RecvBufMaxChunk);
}
if (UseNumaAffinity != false) {
size += 1 + 1;
}
if (CollectiveDeterministicSequentialExecution != false) {
size += 1 + 1;
}
if (CollectiveNccl != false) {
size += 1 + 1;
}
if (ShareSessionStateInClusterspecPropagation != false) {
size += 1 + 1;
}
if (DisableThreadSpinning != false) {
size += 1 + 1;
}
if (ShareClusterDevicesInSession != false) {
size += 1 + 1;
}
if (sessionMetadata_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(SessionMetadata);
}
if (OptimizeForStaticGraph != false) {
size += 1 + 1;
}
if (EnableMlirBridge != false) {
size += 1 + 1;
}
if (MlirBridgeRollout != global::Tensorflow.ConfigProto.Types.Experimental.Types.MlirBridgeRollout.Unspecified) {
size += 2 + pb::CodedOutputStream.ComputeEnumSize((int) MlirBridgeRollout);
}
if (EnableMlirGraphOptimization != false) {
size += 2 + 1;
}
if (DisableOutputPartitionGraphs != false) {
size += 1 + 1;
}
if (XlaFusionAutotunerThresh != 0L) {
size += 1 + pb::CodedOutputStream.ComputeInt64Size(XlaFusionAutotunerThresh);
}
if (UseTfrt != false) {
size += 2 + 1;
}
if (DisableFunctionalOpsLowering != false) {
size += 2 + 1;
}
if (XlaPreferSingleGraphCluster != false) {
size += 2 + 1;
}
if (coordinationConfig_ != null) {
size += 2 + pb::CodedOutputStream.ComputeMessageSize(CoordinationConfig);
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(Experimental other) {
if (other == null) {
return;
}
if (other.CollectiveGroupLeader.Length != 0) {
CollectiveGroupLeader = other.CollectiveGroupLeader;
}
if (other.ExecutorType.Length != 0) {
ExecutorType = other.ExecutorType;
}
if (other.RecvBufMaxChunk != 0) {
RecvBufMaxChunk = other.RecvBufMaxChunk;
}
if (other.UseNumaAffinity != false) {
UseNumaAffinity = other.UseNumaAffinity;
}
if (other.CollectiveDeterministicSequentialExecution != false) {
CollectiveDeterministicSequentialExecution = other.CollectiveDeterministicSequentialExecution;
}
if (other.CollectiveNccl != false) {
CollectiveNccl = other.CollectiveNccl;
}
if (other.ShareSessionStateInClusterspecPropagation != false) {
ShareSessionStateInClusterspecPropagation = other.ShareSessionStateInClusterspecPropagation;
}
if (other.DisableThreadSpinning != false) {
DisableThreadSpinning = other.DisableThreadSpinning;
}
if (other.ShareClusterDevicesInSession != false) {
ShareClusterDevicesInSession = other.ShareClusterDevicesInSession;
}
if (other.sessionMetadata_ != null) {
if (sessionMetadata_ == null) {
SessionMetadata = new global::Tensorflow.SessionMetadata();
}
SessionMetadata.MergeFrom(other.SessionMetadata);
}
if (other.OptimizeForStaticGraph != false) {
OptimizeForStaticGraph = other.OptimizeForStaticGraph;
}
if (other.EnableMlirBridge != false) {
EnableMlirBridge = other.EnableMlirBridge;
}
if (other.MlirBridgeRollout != global::Tensorflow.ConfigProto.Types.Experimental.Types.MlirBridgeRollout.Unspecified) {
MlirBridgeRollout = other.MlirBridgeRollout;
}
if (other.EnableMlirGraphOptimization != false) {
EnableMlirGraphOptimization = other.EnableMlirGraphOptimization;
}
if (other.DisableOutputPartitionGraphs != false) {
DisableOutputPartitionGraphs = other.DisableOutputPartitionGraphs;
}
if (other.XlaFusionAutotunerThresh != 0L) {
XlaFusionAutotunerThresh = other.XlaFusionAutotunerThresh;
}
if (other.UseTfrt != false) {
UseTfrt = other.UseTfrt;
}
if (other.DisableFunctionalOpsLowering != false) {
DisableFunctionalOpsLowering = other.DisableFunctionalOpsLowering;
}
if (other.XlaPreferSingleGraphCluster != false) {
XlaPreferSingleGraphCluster = other.XlaPreferSingleGraphCluster;
}
if (other.coordinationConfig_ != null) {
if (coordinationConfig_ == null) {
CoordinationConfig = new global::Tensorflow.CoordinationServiceConfig();
}
CoordinationConfig.MergeFrom(other.CoordinationConfig);
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 10: {
CollectiveGroupLeader = input.ReadString();
break;
}
case 26: {
ExecutorType = input.ReadString();
break;
}
case 32: {
RecvBufMaxChunk = input.ReadInt32();
break;
}
case 40: {
UseNumaAffinity = input.ReadBool();
break;
}
case 48: {
CollectiveDeterministicSequentialExecution = input.ReadBool();
break;
}
case 56: {
CollectiveNccl = input.ReadBool();
break;
}
case 64: {
ShareSessionStateInClusterspecPropagation = input.ReadBool();
break;
}
case 72: {
DisableThreadSpinning = input.ReadBool();
break;
}
case 80: {
ShareClusterDevicesInSession = input.ReadBool();
break;
}
case 90: {
if (sessionMetadata_ == null) {
SessionMetadata = new global::Tensorflow.SessionMetadata();
}
input.ReadMessage(SessionMetadata);
break;
}
case 96: {
OptimizeForStaticGraph = input.ReadBool();
break;
}
case 104: {
EnableMlirBridge = input.ReadBool();
break;
}
case 112: {
DisableOutputPartitionGraphs = input.ReadBool();
break;
}
case 120: {
XlaFusionAutotunerThresh = input.ReadInt64();
break;
}
case 128: {
EnableMlirGraphOptimization = input.ReadBool();
break;
}
case 136: {
MlirBridgeRollout = (global::Tensorflow.ConfigProto.Types.Experimental.Types.MlirBridgeRollout) input.ReadEnum();
break;
}
case 144: {
UseTfrt = input.ReadBool();
break;
}
case 168: {
DisableFunctionalOpsLowering = input.ReadBool();
break;
}
case 176: {
XlaPreferSingleGraphCluster = input.ReadBool();
break;
}
case 186: {
if (coordinationConfig_ == null) {
CoordinationConfig = new global::Tensorflow.CoordinationServiceConfig();
}
input.ReadMessage(CoordinationConfig);
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 10: {
CollectiveGroupLeader = input.ReadString();
break;
}
case 26: {
ExecutorType = input.ReadString();
break;
}
case 32: {
RecvBufMaxChunk = input.ReadInt32();
break;
}
case 40: {
UseNumaAffinity = input.ReadBool();
break;
}
case 48: {
CollectiveDeterministicSequentialExecution = input.ReadBool();
break;
}
case 56: {
CollectiveNccl = input.ReadBool();
break;
}
case 64: {
ShareSessionStateInClusterspecPropagation = input.ReadBool();
break;
}
case 72: {
DisableThreadSpinning = input.ReadBool();
break;
}
case 80: {
ShareClusterDevicesInSession = input.ReadBool();
break;
}
case 90: {
if (sessionMetadata_ == null) {
SessionMetadata = new global::Tensorflow.SessionMetadata();
}
input.ReadMessage(SessionMetadata);
break;
}
case 96: {
OptimizeForStaticGraph = input.ReadBool();
break;
}
case 104: {
EnableMlirBridge = input.ReadBool();
break;
}
case 112: {
DisableOutputPartitionGraphs = input.ReadBool();
break;
}
case 120: {
XlaFusionAutotunerThresh = input.ReadInt64();
break;
}
case 128: {
EnableMlirGraphOptimization = input.ReadBool();
break;
}
case 136: {
MlirBridgeRollout = (global::Tensorflow.ConfigProto.Types.Experimental.Types.MlirBridgeRollout) input.ReadEnum();
break;
}
case 144: {
UseTfrt = input.ReadBool();
break;
}
case 168: {
DisableFunctionalOpsLowering = input.ReadBool();
break;
}
case 176: {
XlaPreferSingleGraphCluster = input.ReadBool();
break;
}
case 186: {
if (coordinationConfig_ == null) {
CoordinationConfig = new global::Tensorflow.CoordinationServiceConfig();
}
input.ReadMessage(CoordinationConfig);
break;
}
}
}
}
#endif
#region Nested types
/// Container for nested types declared in the Experimental message type.
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static partial class Types {
///
/// An enum that describes the state of the MLIR bridge rollout.
///
public enum MlirBridgeRollout {
///
/// If this field is left unspecified, the MLIR bridge may be selectively
/// enabled on a per graph basis.
///
[pbr::OriginalName("MLIR_BRIDGE_ROLLOUT_UNSPECIFIED")] Unspecified = 0,
///
/// Enabling the MLIR bridge enables it for all graphs in this session.
///
[pbr::OriginalName("MLIR_BRIDGE_ROLLOUT_ENABLED")] Enabled = 1,
///
/// Disabling the MLIR bridge disables it for all graphs in this session.
///
[pbr::OriginalName("MLIR_BRIDGE_ROLLOUT_DISABLED")] Disabled = 2,
///
/// Enable the MLIR bridge on a per graph basis based on an analysis of
/// the features used in the graph. If the features used by the graph are
/// supported by the MLIR bridge, the MLIR bridge will be used to run the
/// graph.
///
[pbr::OriginalName("MLIR_BRIDGE_ROLLOUT_SAFE_MODE_ENABLED")] SafeModeEnabled = 3,
///
/// Enable the MLIR bridge in a fallback mode on a per graph basis based
/// on an analysis of the features used in the graph.
/// Running the MLIR bridge in the fallback mode means that it is
/// executed and it commits all the changes to the TF graph in case
/// of success. And it does not in case of failures and let the old bridge
/// to process the TF graph.
///
[pbr::OriginalName("MLIR_BRIDGE_ROLLOUT_SAFE_MODE_FALLBACK_ENABLED")] SafeModeFallbackEnabled = 4,
}
}
#endregion
}
}
#endregion
}
///
/// Options for a single Run() call.
///
public sealed partial class RunOptions : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new RunOptions());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[7]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public RunOptions() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public RunOptions(RunOptions other) : this() {
traceLevel_ = other.traceLevel_;
timeoutInMs_ = other.timeoutInMs_;
interOpThreadPool_ = other.interOpThreadPool_;
outputPartitionGraphs_ = other.outputPartitionGraphs_;
debugOptions_ = other.debugOptions_ != null ? other.debugOptions_.Clone() : null;
reportTensorAllocationsUponOom_ = other.reportTensorAllocationsUponOom_;
experimental_ = other.experimental_ != null ? other.experimental_.Clone() : null;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public RunOptions Clone() {
return new RunOptions(this);
}
/// Field number for the "trace_level" field.
public const int TraceLevelFieldNumber = 1;
private global::Tensorflow.RunOptions.Types.TraceLevel traceLevel_ = global::Tensorflow.RunOptions.Types.TraceLevel.NoTrace;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.RunOptions.Types.TraceLevel TraceLevel {
get { return traceLevel_; }
set {
traceLevel_ = value;
}
}
/// Field number for the "timeout_in_ms" field.
public const int TimeoutInMsFieldNumber = 2;
private long timeoutInMs_;
///
/// Time to wait for operation to complete in milliseconds.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public long TimeoutInMs {
get { return timeoutInMs_; }
set {
timeoutInMs_ = value;
}
}
/// Field number for the "inter_op_thread_pool" field.
public const int InterOpThreadPoolFieldNumber = 3;
private int interOpThreadPool_;
///
/// The thread pool to use, if session_inter_op_thread_pool is configured.
/// To use the caller thread set this to -1 - this uses the caller thread
/// to execute Session::Run() and thus avoids a context switch. Using the
/// caller thread to execute Session::Run() should be done ONLY for simple
/// graphs, where the overhead of an additional context switch is
/// comparable with the overhead of Session::Run().
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int InterOpThreadPool {
get { return interOpThreadPool_; }
set {
interOpThreadPool_ = value;
}
}
/// Field number for the "output_partition_graphs" field.
public const int OutputPartitionGraphsFieldNumber = 5;
private bool outputPartitionGraphs_;
///
/// Whether the partition graph(s) executed by the executor(s) should be
/// outputted via RunMetadata.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool OutputPartitionGraphs {
get { return outputPartitionGraphs_; }
set {
outputPartitionGraphs_ = value;
}
}
/// Field number for the "debug_options" field.
public const int DebugOptionsFieldNumber = 6;
private global::Tensorflow.DebugOptions debugOptions_;
///
/// EXPERIMENTAL. Options used to initialize DebuggerState, if enabled.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.DebugOptions DebugOptions {
get { return debugOptions_; }
set {
debugOptions_ = value;
}
}
/// Field number for the "report_tensor_allocations_upon_oom" field.
public const int ReportTensorAllocationsUponOomFieldNumber = 7;
private bool reportTensorAllocationsUponOom_;
///
/// When enabled, causes tensor allocation information to be included in
/// the error message when the Run() call fails because the allocator ran
/// out of memory (OOM).
///
/// Enabling this option can slow down the Run() call.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool ReportTensorAllocationsUponOom {
get { return reportTensorAllocationsUponOom_; }
set {
reportTensorAllocationsUponOom_ = value;
}
}
/// Field number for the "experimental" field.
public const int ExperimentalFieldNumber = 8;
private global::Tensorflow.RunOptions.Types.Experimental experimental_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.RunOptions.Types.Experimental Experimental {
get { return experimental_; }
set {
experimental_ = value;
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as RunOptions);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(RunOptions other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if (TraceLevel != other.TraceLevel) return false;
if (TimeoutInMs != other.TimeoutInMs) return false;
if (InterOpThreadPool != other.InterOpThreadPool) return false;
if (OutputPartitionGraphs != other.OutputPartitionGraphs) return false;
if (!object.Equals(DebugOptions, other.DebugOptions)) return false;
if (ReportTensorAllocationsUponOom != other.ReportTensorAllocationsUponOom) return false;
if (!object.Equals(Experimental, other.Experimental)) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
if (TraceLevel != global::Tensorflow.RunOptions.Types.TraceLevel.NoTrace) hash ^= TraceLevel.GetHashCode();
if (TimeoutInMs != 0L) hash ^= TimeoutInMs.GetHashCode();
if (InterOpThreadPool != 0) hash ^= InterOpThreadPool.GetHashCode();
if (OutputPartitionGraphs != false) hash ^= OutputPartitionGraphs.GetHashCode();
if (debugOptions_ != null) hash ^= DebugOptions.GetHashCode();
if (ReportTensorAllocationsUponOom != false) hash ^= ReportTensorAllocationsUponOom.GetHashCode();
if (experimental_ != null) hash ^= Experimental.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
if (TraceLevel != global::Tensorflow.RunOptions.Types.TraceLevel.NoTrace) {
output.WriteRawTag(8);
output.WriteEnum((int) TraceLevel);
}
if (TimeoutInMs != 0L) {
output.WriteRawTag(16);
output.WriteInt64(TimeoutInMs);
}
if (InterOpThreadPool != 0) {
output.WriteRawTag(24);
output.WriteInt32(InterOpThreadPool);
}
if (OutputPartitionGraphs != false) {
output.WriteRawTag(40);
output.WriteBool(OutputPartitionGraphs);
}
if (debugOptions_ != null) {
output.WriteRawTag(50);
output.WriteMessage(DebugOptions);
}
if (ReportTensorAllocationsUponOom != false) {
output.WriteRawTag(56);
output.WriteBool(ReportTensorAllocationsUponOom);
}
if (experimental_ != null) {
output.WriteRawTag(66);
output.WriteMessage(Experimental);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
if (TraceLevel != global::Tensorflow.RunOptions.Types.TraceLevel.NoTrace) {
output.WriteRawTag(8);
output.WriteEnum((int) TraceLevel);
}
if (TimeoutInMs != 0L) {
output.WriteRawTag(16);
output.WriteInt64(TimeoutInMs);
}
if (InterOpThreadPool != 0) {
output.WriteRawTag(24);
output.WriteInt32(InterOpThreadPool);
}
if (OutputPartitionGraphs != false) {
output.WriteRawTag(40);
output.WriteBool(OutputPartitionGraphs);
}
if (debugOptions_ != null) {
output.WriteRawTag(50);
output.WriteMessage(DebugOptions);
}
if (ReportTensorAllocationsUponOom != false) {
output.WriteRawTag(56);
output.WriteBool(ReportTensorAllocationsUponOom);
}
if (experimental_ != null) {
output.WriteRawTag(66);
output.WriteMessage(Experimental);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
if (TraceLevel != global::Tensorflow.RunOptions.Types.TraceLevel.NoTrace) {
size += 1 + pb::CodedOutputStream.ComputeEnumSize((int) TraceLevel);
}
if (TimeoutInMs != 0L) {
size += 1 + pb::CodedOutputStream.ComputeInt64Size(TimeoutInMs);
}
if (InterOpThreadPool != 0) {
size += 1 + pb::CodedOutputStream.ComputeInt32Size(InterOpThreadPool);
}
if (OutputPartitionGraphs != false) {
size += 1 + 1;
}
if (debugOptions_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(DebugOptions);
}
if (ReportTensorAllocationsUponOom != false) {
size += 1 + 1;
}
if (experimental_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(Experimental);
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(RunOptions other) {
if (other == null) {
return;
}
if (other.TraceLevel != global::Tensorflow.RunOptions.Types.TraceLevel.NoTrace) {
TraceLevel = other.TraceLevel;
}
if (other.TimeoutInMs != 0L) {
TimeoutInMs = other.TimeoutInMs;
}
if (other.InterOpThreadPool != 0) {
InterOpThreadPool = other.InterOpThreadPool;
}
if (other.OutputPartitionGraphs != false) {
OutputPartitionGraphs = other.OutputPartitionGraphs;
}
if (other.debugOptions_ != null) {
if (debugOptions_ == null) {
DebugOptions = new global::Tensorflow.DebugOptions();
}
DebugOptions.MergeFrom(other.DebugOptions);
}
if (other.ReportTensorAllocationsUponOom != false) {
ReportTensorAllocationsUponOom = other.ReportTensorAllocationsUponOom;
}
if (other.experimental_ != null) {
if (experimental_ == null) {
Experimental = new global::Tensorflow.RunOptions.Types.Experimental();
}
Experimental.MergeFrom(other.Experimental);
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 8: {
TraceLevel = (global::Tensorflow.RunOptions.Types.TraceLevel) input.ReadEnum();
break;
}
case 16: {
TimeoutInMs = input.ReadInt64();
break;
}
case 24: {
InterOpThreadPool = input.ReadInt32();
break;
}
case 40: {
OutputPartitionGraphs = input.ReadBool();
break;
}
case 50: {
if (debugOptions_ == null) {
DebugOptions = new global::Tensorflow.DebugOptions();
}
input.ReadMessage(DebugOptions);
break;
}
case 56: {
ReportTensorAllocationsUponOom = input.ReadBool();
break;
}
case 66: {
if (experimental_ == null) {
Experimental = new global::Tensorflow.RunOptions.Types.Experimental();
}
input.ReadMessage(Experimental);
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 8: {
TraceLevel = (global::Tensorflow.RunOptions.Types.TraceLevel) input.ReadEnum();
break;
}
case 16: {
TimeoutInMs = input.ReadInt64();
break;
}
case 24: {
InterOpThreadPool = input.ReadInt32();
break;
}
case 40: {
OutputPartitionGraphs = input.ReadBool();
break;
}
case 50: {
if (debugOptions_ == null) {
DebugOptions = new global::Tensorflow.DebugOptions();
}
input.ReadMessage(DebugOptions);
break;
}
case 56: {
ReportTensorAllocationsUponOom = input.ReadBool();
break;
}
case 66: {
if (experimental_ == null) {
Experimental = new global::Tensorflow.RunOptions.Types.Experimental();
}
input.ReadMessage(Experimental);
break;
}
}
}
}
#endif
#region Nested types
/// Container for nested types declared in the RunOptions message type.
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static partial class Types {
///
/// TODO(pbar) Turn this into a TraceOptions proto which allows
/// tracing to be controlled in a more orthogonal manner?
///
public enum TraceLevel {
[pbr::OriginalName("NO_TRACE")] NoTrace = 0,
[pbr::OriginalName("SOFTWARE_TRACE")] SoftwareTrace = 1,
[pbr::OriginalName("HARDWARE_TRACE")] HardwareTrace = 2,
[pbr::OriginalName("FULL_TRACE")] FullTrace = 3,
}
///
/// Everything inside Experimental is subject to change and is not subject
/// to API stability guarantees in
/// https://www.tensorflow.org/guide/version_compat.
///
public sealed partial class Experimental : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new Experimental());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.RunOptions.Descriptor.NestedTypes[0]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public Experimental() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public Experimental(Experimental other) : this() {
collectiveGraphKey_ = other.collectiveGraphKey_;
useRunHandlerPool_ = other.useRunHandlerPool_;
runHandlerPoolOptions_ = other.runHandlerPoolOptions_ != null ? other.runHandlerPoolOptions_.Clone() : null;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public Experimental Clone() {
return new Experimental(this);
}
/// Field number for the "collective_graph_key" field.
public const int CollectiveGraphKeyFieldNumber = 1;
private long collectiveGraphKey_;
///
/// If non-zero, declares that this graph is going to use collective
/// ops and must synchronize step_ids with any other graph with this
/// same group_key value (in a distributed computation where tasks
/// run disjoint graphs).
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public long CollectiveGraphKey {
get { return collectiveGraphKey_; }
set {
collectiveGraphKey_ = value;
}
}
/// Field number for the "use_run_handler_pool" field.
public const int UseRunHandlerPoolFieldNumber = 2;
private bool useRunHandlerPool_;
///
/// If true, then operations (using the inter-op pool) across all
/// session::run() calls will be centrally scheduled, optimizing for (median
/// and tail) latency.
/// Consider using this option for CPU-bound workloads like inference.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool UseRunHandlerPool {
get { return useRunHandlerPool_; }
set {
useRunHandlerPool_ = value;
}
}
/// Field number for the "run_handler_pool_options" field.
public const int RunHandlerPoolOptionsFieldNumber = 3;
private global::Tensorflow.RunOptions.Types.Experimental.Types.RunHandlerPoolOptions runHandlerPoolOptions_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.RunOptions.Types.Experimental.Types.RunHandlerPoolOptions RunHandlerPoolOptions {
get { return runHandlerPoolOptions_; }
set {
runHandlerPoolOptions_ = value;
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as Experimental);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(Experimental other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if (CollectiveGraphKey != other.CollectiveGraphKey) return false;
if (UseRunHandlerPool != other.UseRunHandlerPool) return false;
if (!object.Equals(RunHandlerPoolOptions, other.RunHandlerPoolOptions)) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
if (CollectiveGraphKey != 0L) hash ^= CollectiveGraphKey.GetHashCode();
if (UseRunHandlerPool != false) hash ^= UseRunHandlerPool.GetHashCode();
if (runHandlerPoolOptions_ != null) hash ^= RunHandlerPoolOptions.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
if (CollectiveGraphKey != 0L) {
output.WriteRawTag(8);
output.WriteInt64(CollectiveGraphKey);
}
if (UseRunHandlerPool != false) {
output.WriteRawTag(16);
output.WriteBool(UseRunHandlerPool);
}
if (runHandlerPoolOptions_ != null) {
output.WriteRawTag(26);
output.WriteMessage(RunHandlerPoolOptions);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
if (CollectiveGraphKey != 0L) {
output.WriteRawTag(8);
output.WriteInt64(CollectiveGraphKey);
}
if (UseRunHandlerPool != false) {
output.WriteRawTag(16);
output.WriteBool(UseRunHandlerPool);
}
if (runHandlerPoolOptions_ != null) {
output.WriteRawTag(26);
output.WriteMessage(RunHandlerPoolOptions);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
if (CollectiveGraphKey != 0L) {
size += 1 + pb::CodedOutputStream.ComputeInt64Size(CollectiveGraphKey);
}
if (UseRunHandlerPool != false) {
size += 1 + 1;
}
if (runHandlerPoolOptions_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(RunHandlerPoolOptions);
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(Experimental other) {
if (other == null) {
return;
}
if (other.CollectiveGraphKey != 0L) {
CollectiveGraphKey = other.CollectiveGraphKey;
}
if (other.UseRunHandlerPool != false) {
UseRunHandlerPool = other.UseRunHandlerPool;
}
if (other.runHandlerPoolOptions_ != null) {
if (runHandlerPoolOptions_ == null) {
RunHandlerPoolOptions = new global::Tensorflow.RunOptions.Types.Experimental.Types.RunHandlerPoolOptions();
}
RunHandlerPoolOptions.MergeFrom(other.RunHandlerPoolOptions);
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 8: {
CollectiveGraphKey = input.ReadInt64();
break;
}
case 16: {
UseRunHandlerPool = input.ReadBool();
break;
}
case 26: {
if (runHandlerPoolOptions_ == null) {
RunHandlerPoolOptions = new global::Tensorflow.RunOptions.Types.Experimental.Types.RunHandlerPoolOptions();
}
input.ReadMessage(RunHandlerPoolOptions);
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 8: {
CollectiveGraphKey = input.ReadInt64();
break;
}
case 16: {
UseRunHandlerPool = input.ReadBool();
break;
}
case 26: {
if (runHandlerPoolOptions_ == null) {
RunHandlerPoolOptions = new global::Tensorflow.RunOptions.Types.Experimental.Types.RunHandlerPoolOptions();
}
input.ReadMessage(RunHandlerPoolOptions);
break;
}
}
}
}
#endif
#region Nested types
/// Container for nested types declared in the Experimental message type.
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static partial class Types {
///
/// Options for run handler thread pool.
///
public sealed partial class RunHandlerPoolOptions : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new RunHandlerPoolOptions());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.RunOptions.Types.Experimental.Descriptor.NestedTypes[0]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public RunHandlerPoolOptions() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public RunHandlerPoolOptions(RunHandlerPoolOptions other) : this() {
priority_ = other.priority_;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public RunHandlerPoolOptions Clone() {
return new RunHandlerPoolOptions(this);
}
/// Field number for the "priority" field.
public const int PriorityFieldNumber = 1;
private long priority_;
///
/// Priority of the request. The run handler thread pool will schedule ops
/// based on the priority number. The larger number means higher priority.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public long Priority {
get { return priority_; }
set {
priority_ = value;
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as RunHandlerPoolOptions);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(RunHandlerPoolOptions other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if (Priority != other.Priority) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
if (Priority != 0L) hash ^= Priority.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
if (Priority != 0L) {
output.WriteRawTag(8);
output.WriteInt64(Priority);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
if (Priority != 0L) {
output.WriteRawTag(8);
output.WriteInt64(Priority);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
if (Priority != 0L) {
size += 1 + pb::CodedOutputStream.ComputeInt64Size(Priority);
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(RunHandlerPoolOptions other) {
if (other == null) {
return;
}
if (other.Priority != 0L) {
Priority = other.Priority;
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 8: {
Priority = input.ReadInt64();
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 8: {
Priority = input.ReadInt64();
break;
}
}
}
}
#endif
}
}
#endregion
}
}
#endregion
}
///
/// Metadata output (i.e., non-Tensor) for a single Run() call.
///
public sealed partial class RunMetadata : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new RunMetadata());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[8]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public RunMetadata() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public RunMetadata(RunMetadata other) : this() {
stepStats_ = other.stepStats_ != null ? other.stepStats_.Clone() : null;
costGraph_ = other.costGraph_ != null ? other.costGraph_.Clone() : null;
partitionGraphs_ = other.partitionGraphs_.Clone();
functionGraphs_ = other.functionGraphs_.Clone();
sessionMetadata_ = other.sessionMetadata_ != null ? other.sessionMetadata_.Clone() : null;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public RunMetadata Clone() {
return new RunMetadata(this);
}
/// Field number for the "step_stats" field.
public const int StepStatsFieldNumber = 1;
private global::Tensorflow.StepStats stepStats_;
///
/// Statistics traced for this step. Populated if tracing is turned on via the
/// "RunOptions" proto.
/// EXPERIMENTAL: The format and set of events may change in future versions.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.StepStats StepStats {
get { return stepStats_; }
set {
stepStats_ = value;
}
}
/// Field number for the "cost_graph" field.
public const int CostGraphFieldNumber = 2;
private global::Tensorflow.CostGraphDef costGraph_;
///
/// The cost graph for the computation defined by the run call.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.CostGraphDef CostGraph {
get { return costGraph_; }
set {
costGraph_ = value;
}
}
/// Field number for the "partition_graphs" field.
public const int PartitionGraphsFieldNumber = 3;
private static readonly pb::FieldCodec _repeated_partitionGraphs_codec
= pb::FieldCodec.ForMessage(26, global::Tensorflow.GraphDef.Parser);
private readonly pbc::RepeatedField partitionGraphs_ = new pbc::RepeatedField();
///
/// Graphs of the partitions executed by executors.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public pbc::RepeatedField PartitionGraphs {
get { return partitionGraphs_; }
}
/// Field number for the "function_graphs" field.
public const int FunctionGraphsFieldNumber = 4;
private static readonly pb::FieldCodec _repeated_functionGraphs_codec
= pb::FieldCodec.ForMessage(34, global::Tensorflow.RunMetadata.Types.FunctionGraphs.Parser);
private readonly pbc::RepeatedField functionGraphs_ = new pbc::RepeatedField();
///
/// This is only populated for graphs that are run as functions in TensorFlow
/// V2. There will be an entry below for each function that is traced.
/// The main use cases of the post_optimization_graph and the partition_graphs
/// is to give the caller insight into the graphs that were actually run by the
/// runtime. Additional information (such as those in step_stats) will match
/// these graphs.
/// We also include the pre_optimization_graph since it is usually easier to
/// read, and is helpful in situations where the caller wants to get a high
/// level idea of what the built graph looks like (since the various graph
/// optimization passes might change the structure of the graph significantly).
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public pbc::RepeatedField FunctionGraphs {
get { return functionGraphs_; }
}
/// Field number for the "session_metadata" field.
public const int SessionMetadataFieldNumber = 5;
private global::Tensorflow.SessionMetadata sessionMetadata_;
///
/// Metadata about the session.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.SessionMetadata SessionMetadata {
get { return sessionMetadata_; }
set {
sessionMetadata_ = value;
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as RunMetadata);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(RunMetadata other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if (!object.Equals(StepStats, other.StepStats)) return false;
if (!object.Equals(CostGraph, other.CostGraph)) return false;
if(!partitionGraphs_.Equals(other.partitionGraphs_)) return false;
if(!functionGraphs_.Equals(other.functionGraphs_)) return false;
if (!object.Equals(SessionMetadata, other.SessionMetadata)) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
if (stepStats_ != null) hash ^= StepStats.GetHashCode();
if (costGraph_ != null) hash ^= CostGraph.GetHashCode();
hash ^= partitionGraphs_.GetHashCode();
hash ^= functionGraphs_.GetHashCode();
if (sessionMetadata_ != null) hash ^= SessionMetadata.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
if (stepStats_ != null) {
output.WriteRawTag(10);
output.WriteMessage(StepStats);
}
if (costGraph_ != null) {
output.WriteRawTag(18);
output.WriteMessage(CostGraph);
}
partitionGraphs_.WriteTo(output, _repeated_partitionGraphs_codec);
functionGraphs_.WriteTo(output, _repeated_functionGraphs_codec);
if (sessionMetadata_ != null) {
output.WriteRawTag(42);
output.WriteMessage(SessionMetadata);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
if (stepStats_ != null) {
output.WriteRawTag(10);
output.WriteMessage(StepStats);
}
if (costGraph_ != null) {
output.WriteRawTag(18);
output.WriteMessage(CostGraph);
}
partitionGraphs_.WriteTo(ref output, _repeated_partitionGraphs_codec);
functionGraphs_.WriteTo(ref output, _repeated_functionGraphs_codec);
if (sessionMetadata_ != null) {
output.WriteRawTag(42);
output.WriteMessage(SessionMetadata);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
if (stepStats_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(StepStats);
}
if (costGraph_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(CostGraph);
}
size += partitionGraphs_.CalculateSize(_repeated_partitionGraphs_codec);
size += functionGraphs_.CalculateSize(_repeated_functionGraphs_codec);
if (sessionMetadata_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(SessionMetadata);
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(RunMetadata other) {
if (other == null) {
return;
}
if (other.stepStats_ != null) {
if (stepStats_ == null) {
StepStats = new global::Tensorflow.StepStats();
}
StepStats.MergeFrom(other.StepStats);
}
if (other.costGraph_ != null) {
if (costGraph_ == null) {
CostGraph = new global::Tensorflow.CostGraphDef();
}
CostGraph.MergeFrom(other.CostGraph);
}
partitionGraphs_.Add(other.partitionGraphs_);
functionGraphs_.Add(other.functionGraphs_);
if (other.sessionMetadata_ != null) {
if (sessionMetadata_ == null) {
SessionMetadata = new global::Tensorflow.SessionMetadata();
}
SessionMetadata.MergeFrom(other.SessionMetadata);
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 10: {
if (stepStats_ == null) {
StepStats = new global::Tensorflow.StepStats();
}
input.ReadMessage(StepStats);
break;
}
case 18: {
if (costGraph_ == null) {
CostGraph = new global::Tensorflow.CostGraphDef();
}
input.ReadMessage(CostGraph);
break;
}
case 26: {
partitionGraphs_.AddEntriesFrom(input, _repeated_partitionGraphs_codec);
break;
}
case 34: {
functionGraphs_.AddEntriesFrom(input, _repeated_functionGraphs_codec);
break;
}
case 42: {
if (sessionMetadata_ == null) {
SessionMetadata = new global::Tensorflow.SessionMetadata();
}
input.ReadMessage(SessionMetadata);
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 10: {
if (stepStats_ == null) {
StepStats = new global::Tensorflow.StepStats();
}
input.ReadMessage(StepStats);
break;
}
case 18: {
if (costGraph_ == null) {
CostGraph = new global::Tensorflow.CostGraphDef();
}
input.ReadMessage(CostGraph);
break;
}
case 26: {
partitionGraphs_.AddEntriesFrom(ref input, _repeated_partitionGraphs_codec);
break;
}
case 34: {
functionGraphs_.AddEntriesFrom(ref input, _repeated_functionGraphs_codec);
break;
}
case 42: {
if (sessionMetadata_ == null) {
SessionMetadata = new global::Tensorflow.SessionMetadata();
}
input.ReadMessage(SessionMetadata);
break;
}
}
}
}
#endif
#region Nested types
/// Container for nested types declared in the RunMetadata message type.
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static partial class Types {
public sealed partial class FunctionGraphs : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new FunctionGraphs());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.RunMetadata.Descriptor.NestedTypes[0]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public FunctionGraphs() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public FunctionGraphs(FunctionGraphs other) : this() {
partitionGraphs_ = other.partitionGraphs_.Clone();
preOptimizationGraph_ = other.preOptimizationGraph_ != null ? other.preOptimizationGraph_.Clone() : null;
postOptimizationGraph_ = other.postOptimizationGraph_ != null ? other.postOptimizationGraph_.Clone() : null;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public FunctionGraphs Clone() {
return new FunctionGraphs(this);
}
/// Field number for the "partition_graphs" field.
public const int PartitionGraphsFieldNumber = 1;
private static readonly pb::FieldCodec _repeated_partitionGraphs_codec
= pb::FieldCodec.ForMessage(10, global::Tensorflow.GraphDef.Parser);
private readonly pbc::RepeatedField partitionGraphs_ = new pbc::RepeatedField();
///
/// TODO(nareshmodi): Include some sort of function/cache-key identifier?
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public pbc::RepeatedField PartitionGraphs {
get { return partitionGraphs_; }
}
/// Field number for the "pre_optimization_graph" field.
public const int PreOptimizationGraphFieldNumber = 2;
private global::Tensorflow.GraphDef preOptimizationGraph_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.GraphDef PreOptimizationGraph {
get { return preOptimizationGraph_; }
set {
preOptimizationGraph_ = value;
}
}
/// Field number for the "post_optimization_graph" field.
public const int PostOptimizationGraphFieldNumber = 3;
private global::Tensorflow.GraphDef postOptimizationGraph_;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.GraphDef PostOptimizationGraph {
get { return postOptimizationGraph_; }
set {
postOptimizationGraph_ = value;
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as FunctionGraphs);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(FunctionGraphs other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if(!partitionGraphs_.Equals(other.partitionGraphs_)) return false;
if (!object.Equals(PreOptimizationGraph, other.PreOptimizationGraph)) return false;
if (!object.Equals(PostOptimizationGraph, other.PostOptimizationGraph)) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
hash ^= partitionGraphs_.GetHashCode();
if (preOptimizationGraph_ != null) hash ^= PreOptimizationGraph.GetHashCode();
if (postOptimizationGraph_ != null) hash ^= PostOptimizationGraph.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
partitionGraphs_.WriteTo(output, _repeated_partitionGraphs_codec);
if (preOptimizationGraph_ != null) {
output.WriteRawTag(18);
output.WriteMessage(PreOptimizationGraph);
}
if (postOptimizationGraph_ != null) {
output.WriteRawTag(26);
output.WriteMessage(PostOptimizationGraph);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
partitionGraphs_.WriteTo(ref output, _repeated_partitionGraphs_codec);
if (preOptimizationGraph_ != null) {
output.WriteRawTag(18);
output.WriteMessage(PreOptimizationGraph);
}
if (postOptimizationGraph_ != null) {
output.WriteRawTag(26);
output.WriteMessage(PostOptimizationGraph);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
size += partitionGraphs_.CalculateSize(_repeated_partitionGraphs_codec);
if (preOptimizationGraph_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(PreOptimizationGraph);
}
if (postOptimizationGraph_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(PostOptimizationGraph);
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(FunctionGraphs other) {
if (other == null) {
return;
}
partitionGraphs_.Add(other.partitionGraphs_);
if (other.preOptimizationGraph_ != null) {
if (preOptimizationGraph_ == null) {
PreOptimizationGraph = new global::Tensorflow.GraphDef();
}
PreOptimizationGraph.MergeFrom(other.PreOptimizationGraph);
}
if (other.postOptimizationGraph_ != null) {
if (postOptimizationGraph_ == null) {
PostOptimizationGraph = new global::Tensorflow.GraphDef();
}
PostOptimizationGraph.MergeFrom(other.PostOptimizationGraph);
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 10: {
partitionGraphs_.AddEntriesFrom(input, _repeated_partitionGraphs_codec);
break;
}
case 18: {
if (preOptimizationGraph_ == null) {
PreOptimizationGraph = new global::Tensorflow.GraphDef();
}
input.ReadMessage(PreOptimizationGraph);
break;
}
case 26: {
if (postOptimizationGraph_ == null) {
PostOptimizationGraph = new global::Tensorflow.GraphDef();
}
input.ReadMessage(PostOptimizationGraph);
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 10: {
partitionGraphs_.AddEntriesFrom(ref input, _repeated_partitionGraphs_codec);
break;
}
case 18: {
if (preOptimizationGraph_ == null) {
PreOptimizationGraph = new global::Tensorflow.GraphDef();
}
input.ReadMessage(PreOptimizationGraph);
break;
}
case 26: {
if (postOptimizationGraph_ == null) {
PostOptimizationGraph = new global::Tensorflow.GraphDef();
}
input.ReadMessage(PostOptimizationGraph);
break;
}
}
}
}
#endif
}
}
#endregion
}
///
/// Defines a connection between two tensors in a `GraphDef`.
///
public sealed partial class TensorConnection : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new TensorConnection());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[9]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public TensorConnection() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public TensorConnection(TensorConnection other) : this() {
fromTensor_ = other.fromTensor_;
toTensor_ = other.toTensor_;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public TensorConnection Clone() {
return new TensorConnection(this);
}
/// Field number for the "from_tensor" field.
public const int FromTensorFieldNumber = 1;
private string fromTensor_ = "";
///
/// A tensor name. The value of this tensor will be substituted for
/// the tensor named in `to_tensor`.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public string FromTensor {
get { return fromTensor_; }
set {
fromTensor_ = pb::ProtoPreconditions.CheckNotNull(value, "value");
}
}
/// Field number for the "to_tensor" field.
public const int ToTensorFieldNumber = 2;
private string toTensor_ = "";
///
/// A tensor name. The value of this tensor will be bound to the
/// value of the tensor named in `from_tensor`.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public string ToTensor {
get { return toTensor_; }
set {
toTensor_ = pb::ProtoPreconditions.CheckNotNull(value, "value");
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as TensorConnection);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(TensorConnection other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if (FromTensor != other.FromTensor) return false;
if (ToTensor != other.ToTensor) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
if (FromTensor.Length != 0) hash ^= FromTensor.GetHashCode();
if (ToTensor.Length != 0) hash ^= ToTensor.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
if (FromTensor.Length != 0) {
output.WriteRawTag(10);
output.WriteString(FromTensor);
}
if (ToTensor.Length != 0) {
output.WriteRawTag(18);
output.WriteString(ToTensor);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
if (FromTensor.Length != 0) {
output.WriteRawTag(10);
output.WriteString(FromTensor);
}
if (ToTensor.Length != 0) {
output.WriteRawTag(18);
output.WriteString(ToTensor);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
if (FromTensor.Length != 0) {
size += 1 + pb::CodedOutputStream.ComputeStringSize(FromTensor);
}
if (ToTensor.Length != 0) {
size += 1 + pb::CodedOutputStream.ComputeStringSize(ToTensor);
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(TensorConnection other) {
if (other == null) {
return;
}
if (other.FromTensor.Length != 0) {
FromTensor = other.FromTensor;
}
if (other.ToTensor.Length != 0) {
ToTensor = other.ToTensor;
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 10: {
FromTensor = input.ReadString();
break;
}
case 18: {
ToTensor = input.ReadString();
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 10: {
FromTensor = input.ReadString();
break;
}
case 18: {
ToTensor = input.ReadString();
break;
}
}
}
}
#endif
}
///
/// Defines a subgraph in another `GraphDef` as a set of feed points and nodes
/// to be fetched or executed.
///
/// Compare with the arguments to `Session::Run()`.
///
public sealed partial class CallableOptions : pb::IMessage
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
, pb::IBufferMessage
#endif
{
private static readonly pb::MessageParser _parser = new pb::MessageParser(() => new CallableOptions());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pb::MessageParser Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public static pbr::MessageDescriptor Descriptor {
get { return global::Tensorflow.ConfigReflection.Descriptor.MessageTypes[10]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public CallableOptions() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public CallableOptions(CallableOptions other) : this() {
feed_ = other.feed_.Clone();
fetch_ = other.fetch_.Clone();
target_ = other.target_.Clone();
runOptions_ = other.runOptions_ != null ? other.runOptions_.Clone() : null;
tensorConnection_ = other.tensorConnection_.Clone();
feedDevices_ = other.feedDevices_.Clone();
fetchDevices_ = other.fetchDevices_.Clone();
fetchSkipSync_ = other.fetchSkipSync_;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public CallableOptions Clone() {
return new CallableOptions(this);
}
/// Field number for the "feed" field.
public const int FeedFieldNumber = 1;
private static readonly pb::FieldCodec _repeated_feed_codec
= pb::FieldCodec.ForString(10);
private readonly pbc::RepeatedField feed_ = new pbc::RepeatedField();
///
/// Tensors to be fed in the callable. Each feed is the name of a tensor.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public pbc::RepeatedField Feed {
get { return feed_; }
}
/// Field number for the "fetch" field.
public const int FetchFieldNumber = 2;
private static readonly pb::FieldCodec _repeated_fetch_codec
= pb::FieldCodec.ForString(18);
private readonly pbc::RepeatedField fetch_ = new pbc::RepeatedField();
///
/// Fetches. A list of tensor names. The caller of the callable expects a
/// tensor to be returned for each fetch[i] (see RunStepResponse.tensor). The
/// order of specified fetches does not change the execution order.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public pbc::RepeatedField Fetch {
get { return fetch_; }
}
/// Field number for the "target" field.
public const int TargetFieldNumber = 3;
private static readonly pb::FieldCodec _repeated_target_codec
= pb::FieldCodec.ForString(26);
private readonly pbc::RepeatedField target_ = new pbc::RepeatedField();
///
/// Target Nodes. A list of node names. The named nodes will be run by the
/// callable but their outputs will not be returned.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public pbc::RepeatedField Target {
get { return target_; }
}
/// Field number for the "run_options" field.
public const int RunOptionsFieldNumber = 4;
private global::Tensorflow.RunOptions runOptions_;
///
/// Options that will be applied to each run.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public global::Tensorflow.RunOptions RunOptions {
get { return runOptions_; }
set {
runOptions_ = value;
}
}
/// Field number for the "tensor_connection" field.
public const int TensorConnectionFieldNumber = 5;
private static readonly pb::FieldCodec _repeated_tensorConnection_codec
= pb::FieldCodec.ForMessage(42, global::Tensorflow.TensorConnection.Parser);
private readonly pbc::RepeatedField tensorConnection_ = new pbc::RepeatedField();
///
/// Tensors to be connected in the callable. Each TensorConnection denotes
/// a pair of tensors in the graph, between which an edge will be created
/// in the callable.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public pbc::RepeatedField TensorConnection {
get { return tensorConnection_; }
}
/// Field number for the "feed_devices" field.
public const int FeedDevicesFieldNumber = 6;
private static readonly pbc::MapField.Codec _map_feedDevices_codec
= new pbc::MapField.Codec(pb::FieldCodec.ForString(10, ""), pb::FieldCodec.ForString(18, ""), 50);
private readonly pbc::MapField feedDevices_ = new pbc::MapField();
///
/// The Tensor objects fed in the callable and fetched from the callable
/// are expected to be backed by host (CPU) memory by default.
///
/// The options below allow changing that - feeding tensors backed by
/// device memory, or returning tensors that are backed by device memory.
///
/// The maps below map the name of a feed/fetch tensor (which appears in
/// 'feed' or 'fetch' fields above), to the fully qualified name of the device
/// owning the memory backing the contents of the tensor.
///
/// For example, creating a callable with the following options:
///
/// CallableOptions {
/// feed: "a:0"
/// feed: "b:0"
///
/// fetch: "x:0"
/// fetch: "y:0"
///
/// feed_devices: {
/// "a:0": "/job:localhost/replica:0/task:0/device:GPU:0"
/// }
///
/// fetch_devices: {
/// "y:0": "/job:localhost/replica:0/task:0/device:GPU:0"
/// }
/// }
///
/// means that the Callable expects:
/// - The first argument ("a:0") is a Tensor backed by GPU memory.
/// - The second argument ("b:0") is a Tensor backed by host memory.
/// and of its return values:
/// - The first output ("x:0") will be backed by host memory.
/// - The second output ("y:0") will be backed by GPU memory.
///
/// FEEDS:
/// It is the responsibility of the caller to ensure that the memory of the fed
/// tensors will be correctly initialized and synchronized before it is
/// accessed by operations executed during the call to Session::RunCallable().
///
/// This is typically ensured by using the TensorFlow memory allocators
/// (Device::GetAllocator()) to create the Tensor to be fed.
///
/// Alternatively, for CUDA-enabled GPU devices, this typically means that the
/// operation that produced the contents of the tensor has completed, i.e., the
/// CUDA stream has been synchronized (e.g., via cuCtxSynchronize() or
/// cuStreamSynchronize()).
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public pbc::MapField FeedDevices {
get { return feedDevices_; }
}
/// Field number for the "fetch_devices" field.
public const int FetchDevicesFieldNumber = 7;
private static readonly pbc::MapField.Codec _map_fetchDevices_codec
= new pbc::MapField.Codec(pb::FieldCodec.ForString(10, ""), pb::FieldCodec.ForString(18, ""), 58);
private readonly pbc::MapField fetchDevices_ = new pbc::MapField();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public pbc::MapField FetchDevices {
get { return fetchDevices_; }
}
/// Field number for the "fetch_skip_sync" field.
public const int FetchSkipSyncFieldNumber = 8;
private bool fetchSkipSync_;
///
/// By default, RunCallable() will synchronize the GPU stream before returning
/// fetched tensors on a GPU device, to ensure that the values in those tensors
/// have been produced. This simplifies interacting with the tensors, but
/// potentially incurs a performance hit.
///
/// If this options is set to true, the caller is responsible for ensuring
/// that the values in the fetched tensors have been produced before they are
/// used. The caller can do this by invoking `Device::Sync()` on the underlying
/// device(s), or by feeding the tensors back to the same Session using
/// `feed_devices` with the same corresponding device name.
///
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool FetchSkipSync {
get { return fetchSkipSync_; }
set {
fetchSkipSync_ = value;
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override bool Equals(object other) {
return Equals(other as CallableOptions);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public bool Equals(CallableOptions other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if(!feed_.Equals(other.feed_)) return false;
if(!fetch_.Equals(other.fetch_)) return false;
if(!target_.Equals(other.target_)) return false;
if (!object.Equals(RunOptions, other.RunOptions)) return false;
if(!tensorConnection_.Equals(other.tensorConnection_)) return false;
if (!FeedDevices.Equals(other.FeedDevices)) return false;
if (!FetchDevices.Equals(other.FetchDevices)) return false;
if (FetchSkipSync != other.FetchSkipSync) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override int GetHashCode() {
int hash = 1;
hash ^= feed_.GetHashCode();
hash ^= fetch_.GetHashCode();
hash ^= target_.GetHashCode();
if (runOptions_ != null) hash ^= RunOptions.GetHashCode();
hash ^= tensorConnection_.GetHashCode();
hash ^= FeedDevices.GetHashCode();
hash ^= FetchDevices.GetHashCode();
if (FetchSkipSync != false) hash ^= FetchSkipSync.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void WriteTo(pb::CodedOutputStream output) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
output.WriteRawMessage(this);
#else
feed_.WriteTo(output, _repeated_feed_codec);
fetch_.WriteTo(output, _repeated_fetch_codec);
target_.WriteTo(output, _repeated_target_codec);
if (runOptions_ != null) {
output.WriteRawTag(34);
output.WriteMessage(RunOptions);
}
tensorConnection_.WriteTo(output, _repeated_tensorConnection_codec);
feedDevices_.WriteTo(output, _map_feedDevices_codec);
fetchDevices_.WriteTo(output, _map_fetchDevices_codec);
if (FetchSkipSync != false) {
output.WriteRawTag(64);
output.WriteBool(FetchSkipSync);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalWriteTo(ref pb::WriteContext output) {
feed_.WriteTo(ref output, _repeated_feed_codec);
fetch_.WriteTo(ref output, _repeated_fetch_codec);
target_.WriteTo(ref output, _repeated_target_codec);
if (runOptions_ != null) {
output.WriteRawTag(34);
output.WriteMessage(RunOptions);
}
tensorConnection_.WriteTo(ref output, _repeated_tensorConnection_codec);
feedDevices_.WriteTo(ref output, _map_feedDevices_codec);
fetchDevices_.WriteTo(ref output, _map_fetchDevices_codec);
if (FetchSkipSync != false) {
output.WriteRawTag(64);
output.WriteBool(FetchSkipSync);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(ref output);
}
}
#endif
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public int CalculateSize() {
int size = 0;
size += feed_.CalculateSize(_repeated_feed_codec);
size += fetch_.CalculateSize(_repeated_fetch_codec);
size += target_.CalculateSize(_repeated_target_codec);
if (runOptions_ != null) {
size += 1 + pb::CodedOutputStream.ComputeMessageSize(RunOptions);
}
size += tensorConnection_.CalculateSize(_repeated_tensorConnection_codec);
size += feedDevices_.CalculateSize(_map_feedDevices_codec);
size += fetchDevices_.CalculateSize(_map_fetchDevices_codec);
if (FetchSkipSync != false) {
size += 1 + 1;
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(CallableOptions other) {
if (other == null) {
return;
}
feed_.Add(other.feed_);
fetch_.Add(other.fetch_);
target_.Add(other.target_);
if (other.runOptions_ != null) {
if (runOptions_ == null) {
RunOptions = new global::Tensorflow.RunOptions();
}
RunOptions.MergeFrom(other.RunOptions);
}
tensorConnection_.Add(other.tensorConnection_);
feedDevices_.Add(other.feedDevices_);
fetchDevices_.Add(other.fetchDevices_);
if (other.FetchSkipSync != false) {
FetchSkipSync = other.FetchSkipSync;
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
public void MergeFrom(pb::CodedInputStream input) {
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
input.ReadRawMessage(this);
#else
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 10: {
feed_.AddEntriesFrom(input, _repeated_feed_codec);
break;
}
case 18: {
fetch_.AddEntriesFrom(input, _repeated_fetch_codec);
break;
}
case 26: {
target_.AddEntriesFrom(input, _repeated_target_codec);
break;
}
case 34: {
if (runOptions_ == null) {
RunOptions = new global::Tensorflow.RunOptions();
}
input.ReadMessage(RunOptions);
break;
}
case 42: {
tensorConnection_.AddEntriesFrom(input, _repeated_tensorConnection_codec);
break;
}
case 50: {
feedDevices_.AddEntriesFrom(input, _map_feedDevices_codec);
break;
}
case 58: {
fetchDevices_.AddEntriesFrom(input, _map_fetchDevices_codec);
break;
}
case 64: {
FetchSkipSync = input.ReadBool();
break;
}
}
}
#endif
}
#if !GOOGLE_PROTOBUF_REFSTRUCT_COMPATIBILITY_MODE
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
[global::System.CodeDom.Compiler.GeneratedCode("protoc", null)]
void pb::IBufferMessage.InternalMergeFrom(ref pb::ParseContext input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, ref input);
break;
case 10: {
feed_.AddEntriesFrom(ref input, _repeated_feed_codec);
break;
}
case 18: {
fetch_.AddEntriesFrom(ref input, _repeated_fetch_codec);
break;
}
case 26: {
target_.AddEntriesFrom(ref input, _repeated_target_codec);
break;
}
case 34: {
if (runOptions_ == null) {
RunOptions = new global::Tensorflow.RunOptions();
}
input.ReadMessage(RunOptions);
break;
}
case 42: {
tensorConnection_.AddEntriesFrom(ref input, _repeated_tensorConnection_codec);
break;
}
case 50: {
feedDevices_.AddEntriesFrom(ref input, _map_feedDevices_codec);
break;
}
case 58: {
fetchDevices_.AddEntriesFrom(ref input, _map_fetchDevices_codec);
break;
}
case 64: {
FetchSkipSync = input.ReadBool();
break;
}
}
}
}
#endif
}
#endregion
}
#endregion Designer generated code