using NumSharp.Core; using System; using System.Collections.Generic; using System.Text; using Tensorflow; namespace TensorFlowNET.Examples { /// /// A linear regression learning algorithm example using TensorFlow library. /// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py /// public class LinearRegression : IExample { private NumPyRandom rng = np.random; public void Run() { // Parameters double learning_rate = 0.01; int training_epochs = 1000; int display_step = 50; // Training Data var train_X = np.array(3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779, 6.182, 7.59, 2.167, 7.042, 10.791, 5.313, 7.997, 5.654, 9.27, 3.1); var train_Y = np.array(1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221, 2.827, 3.465, 1.65, 2.904, 2.42, 2.94, 1.3); var n_samples = train_X.shape[0]; // tf Graph Input var X = tf.placeholder(tf.float64); var Y = tf.placeholder(tf.float64); // Set model weights var W = tf.Variable(rng.randn(), name: "weight"); var b = tf.Variable(rng.randn(), name: "bias"); var part1 = tf.multiply(X, W); var pred = tf.add(part1, b); // Mean squared error var sub = pred - Y; var pow = tf.pow(sub, 2); var reduce = tf.reduce_sum(pow); var cost = reduce / (2d * n_samples); // radient descent // Note, minimize() knows to modify W and b because Variable objects are trainable=True by default var optimizer = tf.train.GradientDescentOptimizer(learning_rate); optimizer.minimize(cost); // Initialize the variables (i.e. assign their default value) var init = tf.global_variables_initializer(); // Start training Python.with(tf.Session(), sess => { // Run the initializer sess.run(init); // Fit all training data for (int i = 0; i < training_epochs; i++) { for(int index = 0; index < train_X.size; index++) { (double x, double y) = Python.zip(train_X, train_Y, index); var feed_dict = new Dictionary(); // sess.run(optimizer, feed_dict); } } }); } } }