/***************************************************************************** Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ******************************************************************************/ using NumSharp; using System; using System.Collections.Generic; using System.Text; using Tensorflow; using TensorFlowNET.Examples.Utility; using static Tensorflow.Python; namespace TensorFlowNET.Examples.ImageProcess { /// /// Neural Network classifier for Hand Written Digits /// Sample Neural Network architecture with two layers implemented for classifying MNIST digits. /// Use Stochastic Gradient Descent (SGD) optimizer. /// http://www.easy-tensorflow.com/tf-tutorials/neural-networks /// public class DigitRecognitionNN : IExample { public bool Enabled { get; set; } = true; public bool IsImportingGraph { get; set; } = false; public string Name => "Digits Recognition Neural Network"; const int img_h = 28; const int img_w = 28; int img_size_flat = img_h * img_w; // 784, the total number of pixels int n_classes = 10; // Number of classes, one class per digit // Hyper-parameters int epochs = 10; int batch_size = 100; float learning_rate = 0.001f; int h1 = 200; // number of nodes in the 1st hidden layer Datasets mnist; Tensor x, y; Tensor loss, accuracy; Operation optimizer; int display_freq = 100; float accuracy_test = 0f; float loss_test = 1f; public bool Run() { PrepareData(); BuildGraph(); with(tf.Session(), sess => { Train(sess); Test(sess); }); return loss_test < 0.09 && accuracy_test > 0.95; } public Graph BuildGraph() { var graph = new Graph().as_default(); // Placeholders for inputs (x) and outputs(y) x = tf.placeholder(tf.float32, shape: (-1, img_size_flat), name: "X"); y = tf.placeholder(tf.float32, shape: (-1, n_classes), name: "Y"); // Create a fully-connected layer with h1 nodes as hidden layer var fc1 = fc_layer(x, h1, "FC1", use_relu: true); // Create a fully-connected layer with n_classes nodes as output layer var output_logits = fc_layer(fc1, n_classes, "OUT", use_relu: false); // Define the loss function, optimizer, and accuracy var logits = tf.nn.softmax_cross_entropy_with_logits(labels: y, logits: output_logits); loss = tf.reduce_mean(logits, name: "loss"); optimizer = tf.train.AdamOptimizer(learning_rate: learning_rate, name: "Adam-op").minimize(loss); var correct_prediction = tf.equal(tf.argmax(output_logits, 1), tf.argmax(y, 1), name: "correct_pred"); accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name: "accuracy"); // Network predictions var cls_prediction = tf.argmax(output_logits, axis: 1, name: "predictions"); return graph; } private Tensor fc_layer(Tensor x, int num_units, string name, bool use_relu = true) { var in_dim = x.shape[1]; var initer = tf.truncated_normal_initializer(stddev: 0.01f); var W = tf.get_variable("W_" + name, dtype: tf.float32, shape: (in_dim, num_units), initializer: initer); var initial = tf.constant(0f, num_units); var b = tf.get_variable("b_" + name, dtype: tf.float32, initializer: initial); var layer = tf.matmul(x, W) + b; if (use_relu) layer = tf.nn.relu(layer); return layer; } public Graph ImportGraph() => throw new NotImplementedException(); public void Predict(Session sess) => throw new NotImplementedException(); public void PrepareData() { mnist = MNIST.read_data_sets("mnist", one_hot: true); } public void Train(Session sess) { // Number of training iterations in each epoch var num_tr_iter = mnist.train.labels.len / batch_size; var init = tf.global_variables_initializer(); sess.run(init); float loss_val = 100.0f; float accuracy_val = 0f; foreach (var epoch in range(epochs)) { print($"Training epoch: {epoch + 1}"); // Randomly shuffle the training data at the beginning of each epoch var (x_train, y_train) = randomize(mnist.train.data, mnist.train.labels); foreach (var iteration in range(num_tr_iter)) { var start = iteration * batch_size; var end = (iteration + 1) * batch_size; var (x_batch, y_batch) = get_next_batch(x_train, y_train, start, end); // Run optimization op (backprop) sess.run(optimizer, new FeedItem(x, x_batch), new FeedItem(y, y_batch)); if (iteration % display_freq == 0) { // Calculate and display the batch loss and accuracy var result = sess.run(new[] { loss, accuracy }, new FeedItem(x, x_batch), new FeedItem(y, y_batch)); loss_val = result[0]; accuracy_val = result[1]; print($"iter {iteration.ToString("000")}: Loss={loss_val.ToString("0.0000")}, Training Accuracy={accuracy_val.ToString("P")}"); } } // Run validation after every epoch var results1 = sess.run(new[] { loss, accuracy }, new FeedItem(x, mnist.validation.data), new FeedItem(y, mnist.validation.labels)); loss_val = results1[0]; accuracy_val = results1[1]; print("---------------------------------------------------------"); print($"Epoch: {epoch + 1}, validation loss: {loss_val.ToString("0.0000")}, validation accuracy: {accuracy_val.ToString("P")}"); print("---------------------------------------------------------"); } } public void Test(Session sess) { var result = sess.run(new[] { loss, accuracy }, new FeedItem(x, mnist.test.data), new FeedItem(y, mnist.test.labels)); loss_test = result[0]; accuracy_test = result[1]; print("---------------------------------------------------------"); print($"Test loss: {loss_test.ToString("0.0000")}, test accuracy: {accuracy_test.ToString("P")}"); print("---------------------------------------------------------"); } private (NDArray, NDArray) randomize(NDArray x, NDArray y) { var perm = np.random.permutation(y.shape[0]); np.random.shuffle(perm); return (mnist.train.data[perm], mnist.train.labels[perm]); } /// /// selects a few number of images determined by the batch_size variable (if you don't know why, read about Stochastic Gradient Method) /// /// /// /// /// /// private (NDArray, NDArray) get_next_batch(NDArray x, NDArray y, int start, int end) { var x_batch = x[$"{start}:{end}"]; var y_batch = y[$"{start}:{end}"]; return (x_batch, y_batch); } } }