using Microsoft.VisualStudio.TestTools.UnitTesting;
using Tensorflow.NumPy;
using static Tensorflow.Binding;
namespace Tensorflow.Keras.UnitTest.Layers.Metrics;
[TestClass]
public class MetricsTest : EagerModeTestBase
{
///
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Accuracy
///
[TestMethod]
public void Accuracy()
{
var y_true = np.array(new[,] { { 1 }, { 2 }, { 3 }, { 4 } });
var y_pred = np.array(new[,] { { 0f }, { 2f }, { 3f }, { 4f } });
var m = tf.keras.metrics.Accuracy();
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, 0.75f);
m.reset_states();
var weights = np.array(new[] { 1f, 1f, 0f, 0f });
m.update_state(y_true, y_pred, sample_weight: weights);
r = m.result().numpy();
Assert.AreEqual(r, 0.5f);
}
///
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/BinaryAccuracy
///
[TestMethod]
public void BinaryAccuracy()
{
var y_true = np.array(new[,] { { 1 }, { 1 }, { 0 }, { 0 } });
var y_pred = np.array(new[,] { { 0.98f }, { 1f }, { 0f }, { 0.6f } });
var m = tf.keras.metrics.BinaryAccuracy();
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, 0.75f);
m.reset_states();
var weights = np.array(new[] { 1f, 0f, 0f, 1f });
m.update_state(y_true, y_pred, sample_weight: weights);
r = m.result().numpy();
Assert.AreEqual(r, 0.5f);
}
///
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CategoricalAccuracy
///
[TestMethod]
public void CategoricalAccuracy()
{
var y_true = np.array(new[,] { { 0, 0, 1 }, { 0, 1, 0 } });
var y_pred = np.array(new[,] { { 0.1f, 0.9f, 0.8f }, { 0.05f, 0.95f, 0f } });
var m = tf.keras.metrics.CategoricalAccuracy();
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, 0.5f);
m.reset_states();
var weights = np.array(new[] { 0.7f, 0.3f });
m.update_state(y_true, y_pred, sample_weight: weights);
r = m.result().numpy();
Assert.AreEqual(r, 0.3f);
}
///
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SparseCategoricalAccuracy
///
[TestMethod]
public void SparseCategoricalAccuracy()
{
var y_true = np.array(new[] { 2, 1 });
var y_pred = np.array(new[,] { { 0.1f, 0.6f, 0.3f }, { 0.05f, 0.95f, 0f } });
var m = tf.keras.metrics.SparseCategoricalAccuracy();
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, 0.5f);
m.reset_states();
var weights = np.array(new[] { 0.7f, 0.3f });
m.update_state(y_true, y_pred, sample_weight: weights);
r = m.result().numpy();
Assert.AreEqual(r, 0.3f);
}
///
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CategoricalCrossentropy
///
[TestMethod]
public void CategoricalCrossentropy()
{
var y_true = np.array(new[,] { { 0, 1, 0 }, { 0, 0, 1 } });
var y_pred = np.array(new[,] { { 0.05f, 0.95f, 0f }, { 0.1f, 0.8f, 0.1f } });
var m = tf.keras.metrics.CategoricalCrossentropy();
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, 1.1769392f);
m.reset_states();
var weights = np.array(new[] { 0.3f, 0.7f });
m.update_state(y_true, y_pred, sample_weight: weights);
r = m.result().numpy();
Assert.AreEqual(r, 1.6271976f);
}
///
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SparseCategoricalCrossentropy
///
[TestMethod]
public void SparseCategoricalCrossentropy()
{
var y_true = np.array(new[] { 1, 2 });
var y_pred = np.array(new[,] { { 0.05f, 0.95f, 0f }, { 0.1f, 0.8f, 0.1f } });
var m = tf.keras.metrics.SparseCategoricalCrossentropy();
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, 1.1769392f);
}
///
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CosineSimilarity
///
[TestMethod]
public void CosineSimilarity()
{
var y_true = np.array(new[,] { { 0, 1 }, { 1, 1 } });
var y_pred = np.array(new[,] { { 1f, 0f }, { 1f, 1f } });
var m = tf.keras.metrics.CosineSimilarity(axis: 1);
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, 0.49999997f);
m.reset_states();
var weights = np.array(new[] { 0.3f, 0.7f });
m.update_state(y_true, y_pred, sample_weight: weights);
r = m.result().numpy();
Assert.AreEqual(r, 0.6999999f);
}
///
/// https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/F1Score
///
[TestMethod]
public void F1Score()
{
var y_true = np.array(new[,] { { 1, 1, 1 }, { 1, 0, 0 }, { 1, 1, 0 } });
var y_pred = np.array(new[,] { { 0.2f, 0.6f, 0.7f }, { 0.2f, 0.6f, 0.6f }, { 0.6f, 0.8f, 0f } });
var m = tf.keras.metrics.F1Score(num_classes: 3, threshold: 0.5f);
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, new[] { 0.5f, 0.8f, 0.6666667f });
}
///
/// https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/FBetaScore
///
[TestMethod]
public void FBetaScore()
{
var y_true = np.array(new[,] { { 1, 1, 1 }, { 1, 0, 0 }, { 1, 1, 0 } });
var y_pred = np.array(new[,] { { 0.2f, 0.6f, 0.7f }, { 0.2f, 0.6f, 0.6f }, { 0.6f, 0.8f, 0f } });
var m = tf.keras.metrics.FBetaScore(num_classes: 3, beta: 2.0f, threshold: 0.5f);
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, new[] { 0.3846154f, 0.90909094f, 0.8333334f });
}
///
/// https://www.tensorflow.org/addons/api_docs/python/tfa/metrics/HammingLoss
///
[TestMethod]
public void HammingLoss()
{
// multi-class hamming loss
var y_true = np.array(new[,]
{
{ 1, 0, 0, 0 },
{ 0, 0, 1, 0 },
{ 0, 0, 0, 1 },
{ 0, 1, 0, 0 }
});
var y_pred = np.array(new[,]
{
{ 0.8f, 0.1f, 0.1f, 0.0f },
{ 0.2f, 0.0f, 0.8f, 0.0f },
{ 0.05f, 0.05f, 0.1f, 0.8f },
{ 1.0f, 0.0f, 0.0f, 0.0f }
});
var m = tf.keras.metrics.HammingLoss(mode: "multiclass", threshold: 0.6f);
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, 0.25f);
// multi-label hamming loss
y_true = np.array(new[,]
{
{ 1, 0, 1, 0 },
{ 0, 1, 0, 1 },
{ 0, 0, 0, 1 }
});
y_pred = np.array(new[,]
{
{ 0.82f, 0.5f, 0.9f, 0.0f },
{ 0f, 1f, 0.4f, 0.98f },
{ 0.89f, 0.79f, 0f, 0.3f }
});
m = tf.keras.metrics.HammingLoss(mode: "multilabel", threshold: 0.8f);
m.update_state(y_true, y_pred);
r = m.result().numpy();
Assert.AreEqual(r, 0.16666667f);
}
///
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/TopKCategoricalAccuracy
///
[TestMethod]
public void TopKCategoricalAccuracy()
{
var y_true = np.array(new[,] { { 0, 0, 1 }, { 0, 1, 0 } });
var y_pred = np.array(new[,] { { 0.1f, 0.9f, 0.8f }, { 0.05f, 0.95f, 0f } });
var m = tf.keras.metrics.TopKCategoricalAccuracy(k: 1);
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, 0.5f);
m.reset_states();
var weights = np.array(new[] { 0.7f, 0.3f });
m.update_state(y_true, y_pred, sample_weight: weights);
r = m.result().numpy();
Assert.AreEqual(r, 0.3f);
}
///
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SparseTopKCategoricalAccuracy
///
[TestMethod]
public void SparseTopKCategoricalAccuracy()
{
var y_true = np.array(new[] { 2, 1 });
var y_pred = np.array(new[,] { { 0.1f, 0.9f, 0.8f }, { 0.05f, 0.95f, 0f } });
var m = tf.keras.metrics.SparseTopKCategoricalAccuracy(k: 1);
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, 0.5f);
m.reset_states();
var weights = np.array(new[] { 0.7f, 0.3f });
m.update_state(y_true, y_pred, sample_weight: weights);
r = m.result().numpy();
Assert.AreEqual(r, 0.3f);
}
///
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/top_k_categorical_accuracy
///
[TestMethod]
public void top_k_categorical_accuracy()
{
var y_true = np.array(new[,] { { 0, 0, 1 }, { 0, 1, 0 } });
var y_pred = np.array(new[,] { { 0.1f, 0.9f, 0.8f }, { 0.05f, 0.95f, 0f } });
var m = tf.keras.metrics.top_k_categorical_accuracy(y_true, y_pred, k: 3);
Assert.AreEqual(m.numpy(), new[] { 1f, 1f });
}
///
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Precision
///
[TestMethod]
public void Precision()
{
var y_true = np.array(new[] { 0, 1, 1, 1 });
var y_pred = np.array(new[] { 1, 0, 1, 1 });
var m = tf.keras.metrics.Precision();
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, 0.6666667f);
m.reset_states();
var weights = np.array(new[] { 0f, 0f, 1f, 0f });
m.update_state(y_true, y_pred, sample_weight: weights);
r = m.result().numpy();
Assert.AreEqual(r, 1f);
// With top_k=2, it will calculate precision over y_true[:2]
// and y_pred[:2]
m = tf.keras.metrics.Precision(top_k: 2);
m.update_state(np.array(new[] { 0, 0, 1, 1 }), np.array(new[] { 1, 1, 1, 1 }));
r = m.result().numpy();
Assert.AreEqual(r, 0f);
// With top_k=4, it will calculate precision over y_true[:4]
// and y_pred[:4]
m = tf.keras.metrics.Precision(top_k: 4);
m.update_state(np.array(new[] { 0, 0, 1, 1 }), np.array(new[] { 1, 1, 1, 1 }));
r = m.result().numpy();
Assert.AreEqual(r, 0.5f);
}
///
/// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Recall
///
[TestMethod]
public void Recall()
{
var y_true = np.array(new[] { 0, 1, 1, 1 });
var y_pred = np.array(new[] { 1, 0, 1, 1 });
var m = tf.keras.metrics.Recall();
m.update_state(y_true, y_pred);
var r = m.result().numpy();
Assert.AreEqual(r, 0.6666667f);
m.reset_states();
var weights = np.array(new[] { 0f, 0f, 1f, 0f });
m.update_state(y_true, y_pred, sample_weight: weights);
r = m.result().numpy();
Assert.AreEqual(r, 1f);
}
}