using System; using System.Collections.Generic; using System.Text; using System.Threading; using Tensorflow.Framework.Models; using Tensorflow.Keras.Engine; using Tensorflow.Keras.Layers; using Tensorflow.Keras.Losses; using Tensorflow.Keras.Metrics; using Tensorflow.Keras.Models; namespace Tensorflow.Keras { public interface IKerasApi { IInitializersApi initializers { get; } ILayersApi layers { get; } ILossesApi losses { get; } IOptimizerApi optimizers { get; } IMetricsApi metrics { get; } IModelsApi models { get; } /// /// `Model` groups layers into an object with training and inference features. /// /// /// /// IModel Model(Tensors inputs, Tensors outputs, string name = null); /// /// Instantiate a Keras tensor. /// /// /// /// /// /// /// A boolean specifying whether the placeholder to be created is sparse. /// /// /// A boolean specifying whether the placeholder to be created is ragged. /// /// /// Optional existing tensor to wrap into the `Input` layer. /// If set, the layer will not create a placeholder tensor. /// /// Tensors Input(Shape shape = null, int batch_size = -1, string name = null, TF_DataType dtype = TF_DataType.DtInvalid, bool sparse = false, Tensor tensor = null, bool ragged = false, TypeSpec type_spec = null, Shape batch_input_shape = null, Shape batch_shape = null); } }