using System;
using System.Collections.Generic;
using System.Text;
using System.Threading;
using Tensorflow.Framework.Models;
using Tensorflow.Keras.Engine;
using Tensorflow.Keras.Layers;
using Tensorflow.Keras.Losses;
using Tensorflow.Keras.Metrics;
using Tensorflow.Keras.Models;
namespace Tensorflow.Keras
{
public interface IKerasApi
{
IInitializersApi initializers { get; }
ILayersApi layers { get; }
ILossesApi losses { get; }
IOptimizerApi optimizers { get; }
IMetricsApi metrics { get; }
IModelsApi models { get; }
///
/// `Model` groups layers into an object with training and inference features.
///
///
///
///
IModel Model(Tensors inputs, Tensors outputs, string name = null);
///
/// Instantiate a Keras tensor.
///
///
///
///
///
///
/// A boolean specifying whether the placeholder to be created is sparse.
///
///
/// A boolean specifying whether the placeholder to be created is ragged.
///
///
/// Optional existing tensor to wrap into the `Input` layer.
/// If set, the layer will not create a placeholder tensor.
///
///
Tensors Input(Shape shape = null,
int batch_size = -1,
string name = null,
TF_DataType dtype = TF_DataType.DtInvalid,
bool sparse = false,
Tensor tensor = null,
bool ragged = false,
TypeSpec type_spec = null,
Shape batch_input_shape = null,
Shape batch_shape = null);
}
}