using System;
using System.Collections;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using NumSharp;
using Tensorflow;
using Tensorflow.Keras.Engine;
using TensorFlowNET.Examples.Text.cnn_models;
using TensorFlowNET.Examples.TextClassification;
using TensorFlowNET.Examples.Utility;
using static Tensorflow.Python;
namespace TensorFlowNET.Examples.CnnTextClassification
{
///
/// https://github.com/dongjun-Lee/text-classification-models-tf
///
public class TextClassificationTrain : IExample
{
public int Priority => 100;
public bool Enabled { get; set; } = false;
public string Name => "Text Classification";
public int? DataLimit = null;
public bool ImportGraph { get; set; } = true;
private string dataDir = "text_classification";
private string dataFileName = "dbpedia_csv.tar.gz";
public string model_name = "vd_cnn"; // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn
private const int CHAR_MAX_LEN = 1014;
private const int NUM_CLASS = 2;
private const int BATCH_SIZE = 64;
private const int NUM_EPOCHS = 10;
protected float loss_value = 0;
public bool Run()
{
PrepareData();
var graph = tf.Graph().as_default();
return with(tf.Session(graph), sess =>
{
if (ImportGraph)
return RunWithImportedGraph(sess, graph);
else
return RunWithBuiltGraph(sess, graph);
});
}
protected virtual bool RunWithImportedGraph(Session sess, Graph graph)
{
Console.WriteLine("Building dataset...");
var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit);
Console.WriteLine("\tDONE");
var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f);
Console.WriteLine("Import graph...");
var meta_file = model_name + ".meta";
tf.train.import_meta_graph(Path.Join("graph", meta_file));
Console.WriteLine("\tDONE");
// definitely necessary, otherwize will get the exception of "use uninitialized variable"
sess.run(tf.global_variables_initializer());
var train_batches = batch_iter(train_x, train_y, BATCH_SIZE, NUM_EPOCHS);
var num_batches_per_epoch = (len(train_x) - 1); // BATCH_SIZE + 1
double max_accuracy = 0;
Tensor is_training = graph.get_operation_by_name("is_training");
Tensor model_x = graph.get_operation_by_name("x");
Tensor model_y = graph.get_operation_by_name("y");
Tensor loss = graph.get_operation_by_name("loss/loss");
//var optimizer_nodes = graph._nodes_by_name.Keys.Where(key => key.Contains("optimizer")).ToArray();
Tensor optimizer = graph.get_operation_by_name("loss/optimizer");
Tensor global_step = graph.get_operation_by_name("global_step");
Tensor accuracy = graph.get_operation_by_name("accuracy/accuracy");
int i = 0;
foreach (var (x_batch, y_batch) in train_batches)
{
i++;
Console.WriteLine("Training on batch " + i);
var train_feed_dict = new Hashtable
{
[model_x] = x_batch,
[model_y] = y_batch,
[is_training] = true,
};
// original python:
//_, step, loss = sess.run([model.optimizer, model.global_step, model.loss], feed_dict = train_feed_dict)
var result = sess.run(new Tensor[] { optimizer, global_step, loss }, train_feed_dict);
// exception here, loss value seems like a float[]
//loss_value = result[2];
var step = result[1];
if (step % 10 == 0)
Console.WriteLine($"Step {step} loss: {result[2]}");
if (step % 100 == 0)
{
continue;
// # Test accuracy with validation data for each epoch.
var valid_batches = batch_iter(valid_x, valid_y, BATCH_SIZE, 1);
var (sum_accuracy, cnt) = (0, 0);
foreach (var (valid_x_batch, valid_y_batch) in valid_batches)
{
// valid_feed_dict = {
// model.x: valid_x_batch,
// model.y: valid_y_batch,
// model.is_training: False
// }
// accuracy = sess.run(model.accuracy, feed_dict = valid_feed_dict)
// sum_accuracy += accuracy
// cnt += 1
}
// valid_accuracy = sum_accuracy / cnt
// print("\nValidation Accuracy = {1}\n".format(step // num_batches_per_epoch, sum_accuracy / cnt))
// # Save model
// if valid_accuracy > max_accuracy:
// max_accuracy = valid_accuracy
// saver.save(sess, "{0}/{1}.ckpt".format(args.model, args.model), global_step = step)
// print("Model is saved.\n")
}
}
return false;
}
protected virtual bool RunWithBuiltGraph(Session session, Graph graph)
{
Console.WriteLine("Building dataset...");
var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit);
var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f);
ITextClassificationModel model = null;
switch (model_name) // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn
{
case "word_cnn":
case "char_cnn":
case "word_rnn":
case "att_rnn":
case "rcnn":
throw new NotImplementedException();
break;
case "vd_cnn":
model = new VdCnn(alphabet_size, CHAR_MAX_LEN, NUM_CLASS);
break;
}
// todo train the model
return false;
}
// TODO: this originally is an SKLearn utility function. it randomizes train and test which we don't do here
private (NDArray, NDArray, NDArray, NDArray) train_test_split(NDArray x, NDArray y, float test_size = 0.3f)
{
Console.WriteLine("Splitting in Training and Testing data...");
int len = x.shape[0];
//int classes = y.Data().Distinct().Count();
//int samples = len / classes;
int train_size = (int)Math.Round(len * (1 - test_size));
var train_x = x[new Slice(stop:train_size), new Slice()];
var valid_x = x[new Slice(start: train_size+1), new Slice()];
var train_y = y[new Slice(stop: train_size)];
var valid_y = y[new Slice(start: train_size + 1)];
Console.WriteLine("\tDONE");
return (train_x, valid_x, train_y, valid_y);
}
private IEnumerable<(NDArray, NDArray)> batch_iter(NDArray inputs, NDArray outputs, int batch_size, int num_epochs)
{
var num_batches_per_epoch = (len(inputs) - 1); // batch_size + 1
foreach (var epoch in range(num_epochs))
{
foreach (var batch_num in range(num_batches_per_epoch))
{
var start_index = batch_num * batch_size;
var end_index = Math.Min((batch_num + 1) * batch_size, len(inputs));
yield return (inputs[new Slice(start_index, end_index)], outputs[new Slice(start_index,end_index)]);
}
}
}
public void PrepareData()
{
string url = "https://github.com/le-scientifique/torchDatasets/raw/master/dbpedia_csv.tar.gz";
Web.Download(url, dataDir, dataFileName);
Compress.ExtractTGZ(Path.Join(dataDir, dataFileName), dataDir);
if (ImportGraph)
{
// download graph meta data
var meta_file = model_name + ".meta";
url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/" + meta_file;
Web.Download(url, "graph", meta_file);
}
}
}
}