/***************************************************************************** Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ******************************************************************************/ using System; using System.Collections.Generic; using System.Linq; namespace Tensorflow { public partial class tensorflow { /// /// A convenient alias for None, useful for indexing arrays. /// public string newaxis = ""; /// /// Concatenates tensors along one dimension. /// /// A list of `Tensor` objects or a single `Tensor`. /// /// /// A `Tensor` resulting from concatenation of the input tensors. public Tensor concat(IList values, int axis, string name = "concat") { if (values.Count == 1) throw new NotImplementedException("tf.concat length is 1"); return gen_array_ops.concat_v2(values.ToArray(), axis, name: name); } /// /// Inserts a dimension of 1 into a tensor's shape. /// /// /// /// /// /// /// A `Tensor` with the same data as `input`, but its shape has an additional /// dimension of size 1 added. /// public Tensor expand_dims(Tensor input, int axis = -1, string name = null, int dim = -1) => array_ops.expand_dims(input, axis, name, dim); /// /// Creates a tensor filled with a scalar value. /// /// /// /// /// public Tensor fill(Tensor dims, T value, string name = null) => gen_array_ops.fill(dims, value, name: name); /// /// Return the elements, either from `x` or `y`, depending on the `condition`. /// /// public Tensor where(Tensor condition, Tx x, Ty y, string name = null) => array_ops.where(condition, x, y, name); /// /// Transposes `a`. Permutes the dimensions according to `perm`. /// /// /// /// /// /// public Tensor transpose(T1 a, int[] perm = null, string name = "transpose", bool conjugate = false) => array_ops.transpose(a, perm, name, conjugate); public Tensor squeeze(Tensor input, int[] axis = null, string name = null, int squeeze_dims = -1) => gen_array_ops.squeeze(input, axis, name); /// /// Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor. /// /// /// /// /// public Tensor stack(object values, int axis = 0, string name = "stack") => array_ops.stack(values, axis, name: name); public Tensor one_hot(Tensor indices, int depth, Tensor on_value = null, Tensor off_value = null, TF_DataType dtype = TF_DataType.DtInvalid, int axis = -1, string name = null) => array_ops.one_hot(indices, depth, dtype: dtype, axis: axis, name: name); /// /// Pads a tensor /// /// /// /// /// /// /// public Tensor pad(Tensor tensor, Tensor paddings, string mode = "CONSTANT", string name = null, int constant_values = 0) => array_ops.pad(tensor, paddings, mode: mode, name: name, constant_values: constant_values); /// /// A placeholder op that passes through `input` when its output is not fed. /// /// /// A `Tensor`. The default value to produce when output is not fed. /// /// A `tf.TensorShape` or list of `int`s. The (possibly partial) shape of /// the tensor. /// /// A name for the operation (optional). /// A `Tensor`. Has the same type as `input`. public Tensor placeholder_with_default(T input, int[] shape, string name = null) => gen_array_ops.placeholder_with_default(input, shape, name: name); /// /// Returns the shape of a tensor. /// /// /// /// /// public Tensor shape(Tensor input, string name = null, TF_DataType out_type = TF_DataType.TF_INT32) => array_ops.shape_internal(input, name, optimize: true, out_type: out_type); /// /// Unpacks the given dimension of a rank-`R` tensor into rank-`(R-1)` tensors. /// /// /// /// /// /// public Tensor[] unstack(Tensor value, int? num = null, int axis = 0, string name = "unstack") => array_ops.unstack(value, num: num, axis: axis, name: name); } }