using Microsoft.VisualStudio.TestTools.UnitTesting;
using Newtonsoft.Json.Linq;
using Tensorflow.NumPy;
using System.Collections;
using Tensorflow;
using static Tensorflow.Binding;
namespace TensorFlowNET.UnitTest
{
///
/// Use as base class for test classes to get additional assertions
///
public class PythonTest
{
#region python compatibility layer
protected PythonTest self { get => this; }
protected int None => -1;
#endregion
#region pytest assertions
public void assertItemsEqual(ICollection given, ICollection expected)
{
if (given is Hashtable && expected is Hashtable)
{
Assert.AreEqual(JObject.FromObject(expected).ToString(), JObject.FromObject(given).ToString());
return;
}
Assert.IsNotNull(expected);
Assert.IsNotNull(given);
var e = expected.OfType().ToArray();
var g = given.OfType().ToArray();
Assert.AreEqual(e.Length, g.Length, $"The collections differ in length expected {e.Length} but got {g.Length}");
for (int i = 0; i < e.Length; i++)
{
/*if (g[i] is NDArray && e[i] is NDArray)
assertItemsEqual((g[i] as NDArray).GetData(), (e[i] as NDArray).GetData());
else*/
if (e[i] is ICollection && g[i] is ICollection)
assertEqual(g[i], e[i]);
else
Assert.AreEqual(e[i], g[i], $"Items differ at index {i}, expected {e[i]} but got {g[i]}");
}
}
public void assertAllEqual(ICollection given, ICollection expected)
{
assertItemsEqual(given, expected);
}
public void assertFloat32Equal(float expected, float actual, string msg)
{
float eps = 1e-6f;
Assert.IsTrue(Math.Abs(expected - actual) < eps * Math.Max(1.0f, Math.Abs(expected)), $"{msg}: expected {expected} vs actual {actual}");
}
public void assertFloat64Equal(double expected, double actual, string msg)
{
double eps = 1e-16f;
Assert.IsTrue(Math.Abs(expected - actual) < eps * Math.Max(1.0f, Math.Abs(expected)), $"{msg}: expected {expected} vs actual {actual}");
}
public void AssetSequenceEqual(float[] expected, float[] actual)
{
float eps = 1e-5f;
for (int i = 0; i < expected.Length; i++)
Assert.IsTrue(Math.Abs(expected[i] - actual[i]) < eps * Math.Max(1.0f, Math.Abs(expected[i])), $"expected {expected} vs actual {actual}");
}
public void AssetSequenceEqual(double[] expected, double[] actual)
{
double eps = 1e-5f;
for (int i = 0; i < expected.Length; i++)
Assert.IsTrue(Math.Abs(expected[i] - actual[i]) < eps * Math.Max(1.0f, Math.Abs(expected[i])), $"expected {expected} vs actual {actual}");
}
public void assertEqual(object given, object expected)
{
/*if (given is NDArray && expected is NDArray)
{
assertItemsEqual((given as NDArray).GetData(), (expected as NDArray).GetData());
return;
}*/
if (given is Hashtable && expected is Hashtable)
{
Assert.AreEqual(JObject.FromObject(expected).ToString(), JObject.FromObject(given).ToString());
return;
}
if (given is ICollection collectionGiven && expected is ICollection collectionExpected)
{
assertItemsEqual(collectionGiven, collectionExpected);
return;
}
if (given is float && expected is float)
{
assertFloat32Equal((float)expected, (float)given, "");
return;
}
if (given is double && expected is double)
{
assertFloat64Equal((double)expected, (double)given, "");
return;
}
Assert.AreEqual(expected, given);
}
public void assertEquals(object given, object expected)
{
assertEqual(given, expected);
}
public void assert(object given)
{
if (given is bool)
Assert.IsTrue((bool)given);
Assert.IsNotNull(given);
}
public void assertIsNotNone(object given)
{
Assert.IsNotNull(given);
}
public void assertFalse(bool cond)
{
Assert.IsFalse(cond);
}
public void assertTrue(bool cond)
{
Assert.IsTrue(cond);
}
public void assertAllClose(NDArray array1, NDArray array2, double eps = 1e-5)
{
CollectionAssert.AreEqual(array1.ToArray(), array2.ToArray(), new CollectionComparer(eps));
//TODO: Assert.IsTrue(np.allclose(array1, array2, rtol: eps));
}
public void assertAllClose(double value, NDArray array2, double eps = 1e-5)
{
if (array2.shape.IsScalar)
{
double value2 = array2;
Assert.AreEqual(value, value2, eps);
return;
}
var array1 = np.ones_like(array2) * value;
CollectionAssert.AreEqual(array1.ToArray(), array2.ToArray(), new CollectionComparer(eps));
//TODO: Assert.IsTrue(np.allclose(array1, array2, rtol: eps));
}
private class CollectionComparer : IComparer
{
private readonly double _epsilon;
public CollectionComparer(double eps = 1e-06)
{
_epsilon = eps;
}
public int Compare(object? x, object? y)
{
if (x == null && y == null)
{
return 0;
}
else if (x == null)
{
return -1;
}
else if (y == null)
{
return 1;
}
var a = Convert.ToDouble(x);
var b = Convert.ToDouble(y);
double delta = Math.Abs(a - b);
if (delta < _epsilon)
{
return 0;
}
return a.CompareTo(b);
}
}
public void assertAllCloseAccordingToType(
double[,] expected,
T[,] given,
double eps = 1e-6,
float float_eps = 1e-6f)
{
Assert.AreEqual(expected.GetLength(0), given.GetLength(0));
Assert.AreEqual(expected.GetLength(1), given.GetLength(1));
var flattenGiven = given.Cast().ToArray();
assertAllCloseAccordingToType(expected, flattenGiven, eps, float_eps);
}
public void assertAllCloseAccordingToType(
ICollection expected,
ICollection given,
double eps = 1e-6,
float float_eps = 1e-6f)
{
// TODO: check if any of arguments is not double and change toletance
// remove givenAsDouble and cast expected instead
var givenAsDouble = given.Select(x => Convert.ToDouble(x)).ToArray();
CollectionAssert.AreEqual(expected, givenAsDouble, new CollectionComparer(eps));
}
public void assertProtoEquals(object toProto, object o)
{
throw new NotImplementedException();
}
#endregion
#region tensor evaluation and test session
private Session? _cached_session = null;
private Graph? _cached_graph = null;
private object? _cached_config = null;
private bool _cached_force_gpu = false;
private void _ClearCachedSession()
{
if (self._cached_session != null)
{
self._cached_session.Dispose();
self._cached_session = null;
}
}
//protected object _eval_helper(Tensor[] tensors)
//{
// if (tensors == null)
// return null;
// return nest.map_structure(self._eval_tensor, tensors);
//}
protected object? _eval_tensor(object tensor)
{
if (tensor == null)
return None;
//else if (callable(tensor))
// return self._eval_helper(tensor())
else
{
try
{
//TODO:
// if sparse_tensor.is_sparse(tensor):
// return sparse_tensor.SparseTensorValue(tensor.indices, tensor.values,
// tensor.dense_shape)
//return (tensor as Tensor).numpy();
}
catch (Exception)
{
throw new ValueError("Unsupported type: " + tensor.GetType());
}
return null;
}
}
///
/// This function is used in many original tensorflow unit tests to evaluate tensors
/// in a test session with special settings (for instance constant folding off)
///
///
public T evaluate(Tensor tensor)
{
object? result = null;
// if context.executing_eagerly():
// return self._eval_helper(tensors)
// else:
{
var sess = tf.get_default_session();
var ndarray = tensor.eval(sess);
if (typeof(T) == typeof(int))
{
int i = ndarray;
result = i;
}
else if (typeof(T) == typeof(float))
{
float f = ndarray;
result = f;
}
else if (typeof(T) == typeof(double))
{
double d = ndarray;
result = d;
}
else if (
typeof(T) == typeof(double[])
|| typeof(T) == typeof(double[,]))
{
result = ndarray.ToMultiDimArray();
}
else if (typeof(T) == typeof(float[])
|| typeof(T) == typeof(float[,]))
{
result = ndarray.ToMultiDimArray();
}
else if (typeof(T) == typeof(int[])
|| typeof(T) == typeof(int[,]))
{
result = ndarray.ToMultiDimArray();
}
else
{
result = ndarray;
}
return (T)result;
}
}
///Returns a TensorFlow Session for use in executing tests.
public Session? cached_session(
Graph? graph = null, object? config = null, bool use_gpu = false, bool force_gpu = false)
{
// This method behaves differently than self.session(): for performance reasons
// `cached_session` will by default reuse the same session within the same
// test.The session returned by this function will only be closed at the end
// of the test(in the TearDown function).
// Use the `use_gpu` and `force_gpu` options to control where ops are run.If
// `force_gpu` is True, all ops are pinned to `/ device:GPU:0`. Otherwise, if
// `use_gpu` is True, TensorFlow tries to run as many ops on the GPU as
// possible.If both `force_gpu and `use_gpu` are False, all ops are pinned to
// the CPU.
// Example:
// python
// class MyOperatorTest(test_util.TensorFlowTestCase) :
// def testMyOperator(self):
// with self.cached_session() as sess:
// valid_input = [1.0, 2.0, 3.0, 4.0, 5.0]
// result = MyOperator(valid_input).eval()
// self.assertEqual(result, [1.0, 2.0, 3.0, 5.0, 8.0]
// invalid_input = [-1.0, 2.0, 7.0]
// with self.assertRaisesOpError("negative input not supported"):
// MyOperator(invalid_input).eval()
// Args:
// graph: Optional graph to use during the returned session.
// config: An optional config_pb2.ConfigProto to use to configure the
// session.
// use_gpu: If True, attempt to run as many ops as possible on GPU.
// force_gpu: If True, pin all ops to `/device:GPU:0`.
// Yields:
// A Session object that should be used as a context manager to surround
// the graph building and execution code in a test case.
// TODO:
// if context.executing_eagerly():
// return self._eval_helper(tensors)
// else:
{
var sess = self._get_cached_session(
graph, config, force_gpu, crash_if_inconsistent_args: true);
using var cached = self._constrain_devices_and_set_default(sess, use_gpu, force_gpu);
return cached;
}
}
//Returns a TensorFlow Session for use in executing tests.
public Session session(Graph? graph = null, object? config = null, bool use_gpu = false, bool force_gpu = false)
{
//Note that this will set this session and the graph as global defaults.
//Use the `use_gpu` and `force_gpu` options to control where ops are run.If
//`force_gpu` is True, all ops are pinned to `/device:GPU:0`. Otherwise, if
//`use_gpu` is True, TensorFlow tries to run as many ops on the GPU as
//possible.If both `force_gpu and `use_gpu` are False, all ops are pinned to
//the CPU.
//Example:
//```python
//class MyOperatorTest(test_util.TensorFlowTestCase):
// def testMyOperator(self):
// with self.session(use_gpu= True):
// valid_input = [1.0, 2.0, 3.0, 4.0, 5.0]
// result = MyOperator(valid_input).eval()
// self.assertEqual(result, [1.0, 2.0, 3.0, 5.0, 8.0]
// invalid_input = [-1.0, 2.0, 7.0]
// with self.assertRaisesOpError("negative input not supported"):
// MyOperator(invalid_input).eval()
//```
//Args:
// graph: Optional graph to use during the returned session.
// config: An optional config_pb2.ConfigProto to use to configure the
// session.
// use_gpu: If True, attempt to run as many ops as possible on GPU.
// force_gpu: If True, pin all ops to `/device:GPU:0`.
//Yields:
// A Session object that should be used as a context manager to surround
// the graph building and execution code in a test case.
Session? s = null;
//if (context.executing_eagerly())
// yield None
//else
//{
s = self._create_session(graph, config, force_gpu);
//}
return s.as_default();
}
private Session? _constrain_devices_and_set_default(Session sess, bool use_gpu, bool force_gpu)
{
// Set the session and its graph to global default and constrain devices."""
if (tf.executing_eagerly())
return null;
else
{
sess.graph.as_default();
sess.as_default();
{
if (force_gpu)
{
// TODO:
// Use the name of an actual device if one is detected, or
// '/device:GPU:0' otherwise
/* var gpu_name = gpu_device_name();
if (!gpu_name)
gpu_name = "/device:GPU:0"
using (sess.graph.device(gpu_name)) {
yield return sess;
}*/
return sess;
}
else if (use_gpu)
return sess;
else
using (sess.graph.device("/device:CPU:0"))
return sess;
}
}
}
// See session() for details.
private Session _create_session(Graph? graph, object? cfg, bool forceGpu)
{
var prepare_config = new Func((config) =>
{
// """Returns a config for sessions.
// Args:
// config: An optional config_pb2.ConfigProto to use to configure the
// session.
// Returns:
// A config_pb2.ConfigProto object.
//TODO: config
// # use_gpu=False. Currently many tests rely on the fact that any device
// # will be used even when a specific device is supposed to be used.
// allow_soft_placement = not force_gpu
// if config is None:
// config = config_pb2.ConfigProto()
// config.allow_soft_placement = allow_soft_placement
// config.gpu_options.per_process_gpu_memory_fraction = 0.3
// elif not allow_soft_placement and config.allow_soft_placement:
// config_copy = config_pb2.ConfigProto()
// config_copy.CopyFrom(config)
// config = config_copy
// config.allow_soft_placement = False
// # Don't perform optimizations for tests so we don't inadvertently run
// # gpu ops on cpu
// config.graph_options.optimizer_options.opt_level = -1
// # Disable Grappler constant folding since some tests & benchmarks
// # use constant input and become meaningless after constant folding.
// # DO NOT DISABLE GRAPPLER OPTIMIZERS WITHOUT CONSULTING WITH THE
// # GRAPPLER TEAM.
// config.graph_options.rewrite_options.constant_folding = (
// rewriter_config_pb2.RewriterConfig.OFF)
// config.graph_options.rewrite_options.pin_to_host_optimization = (
// rewriter_config_pb2.RewriterConfig.OFF)
return config;
});
//TODO: use this instead of normal session
//return new ErrorLoggingSession(graph = graph, config = prepare_config(config))
return new Session(graph);//, config = prepare_config(config))
}
private Session _get_cached_session(
Graph? graph = null,
object? config = null,
bool force_gpu = false,
bool crash_if_inconsistent_args = true)
{
// See cached_session() for documentation.
if (self._cached_session == null)
{
var sess = self._create_session(graph, config, force_gpu);
self._cached_session = sess;
self._cached_graph = graph;
self._cached_config = config;
self._cached_force_gpu = force_gpu;
return sess;
}
else
{
if (crash_if_inconsistent_args && self._cached_graph != null && !self._cached_graph.Equals(graph))
throw new ValueError(@"The graph used to get the cached session is
different than the one that was used to create the
session. Maybe create a new session with
self.session()");
if (crash_if_inconsistent_args && self._cached_config != null && !self._cached_config.Equals(config))
{
throw new ValueError(@"The config used to get the cached session is
different than the one that was used to create the
session. Maybe create a new session with
self.session()");
}
if (crash_if_inconsistent_args && !self._cached_force_gpu.Equals(force_gpu))
{
throw new ValueError(@"The force_gpu value used to get the cached session is
different than the one that was used to create the
session. Maybe create a new session with
self.session()");
}
return self._cached_session;
}
}
[TestCleanup]
public void Cleanup()
{
_ClearCachedSession();
}
#endregion
public void AssetSequenceEqual(T[] a, T[] b)
{
Assert.IsTrue(Enumerable.SequenceEqual(a, b));
}
}
}