using System;
using System.Collections.Generic;
using System.Text;
using Tensorflow;
using NumSharp.Core;
using System.Linq;
namespace TensorFlowNET.Examples
{
///
/// https://github.com/nicolov/naive_bayes_tensorflow
///
public class NaiveBayesClassifier : Python, IExample
{
public void Run()
{
np.array(1.0f, 1.0f);
// var X = np.array(np.array(1.0f, 1.0f), np.array(2.0f, 2.0f), np.array(1.0f, -1.0f), np.array(2.0f, -2.0f), np.array(-1.0f, -1.0f), np.array(-1.0f, 1.0f),);
// var X = np.array(new float[][] { new float[] { 1.0f, 1.0f}, new float[] { 2.0f, 2.0f }, new float[] { -1.0f, -1.0f }, new float[] { -2.0f, -2.0f }, new float[] { 1.0f, -1.0f }, new float[] { 2.0f, -2.0f }, });
var X = np.array(new float[][] { new float[] { 1.0f, 1.0f }, new float[] { 2.0f, 2.0f }, new float[] { -1.0f, -1.0f }, new float[] { -2.0f, -2.0f }, new float[] { 1.0f, -1.0f }, new float[] { 2.0f, -2.0f }, });
var y = np.array(0,0,1,1,2,2);
fit(X, y);
// Create a regular grid and classify each point
}
public void fit(NDArray X, NDArray y)
{
NDArray unique_y = y.unique();
Dictionary> dic = new Dictionary>();
// Init uy in dic
foreach (int uy in unique_y.Data())
{
dic.Add(uy, new List());
}
// Separate training points by class
// Shape : nb_classes * nb_samples * nb_features
int maxCount = 0;
for (int i = 0; i < y.size; i++)
{
long curClass = (long)y[i];
List l = dic[curClass];
l.Add(X[i] as NDArray);
if (l.Count > maxCount)
{
maxCount = l.Count;
}
dic[curClass] = l;
}
NDArray points_by_class = np.zeros(new int[] { dic.Count, maxCount, X.shape[1] });
foreach (KeyValuePair> kv in dic)
{
var cls = kv.Value.ToArray();
for (int i = 0; i < dic.Count; i++)
{
points_by_class[i] = dic[i];
}
}
// estimate mean and variance for each class / feature
// shape : nb_classes * nb_features
var cons = tf.constant(points_by_class);
Tuple tup = tf.nn.moments(cons, new int[]{1});
var mean = tup.Item1;
var variance = tup.Item2;
// Create a 3x2 univariate normal distribution with the
// Known mean and variance
// var dist = tf.distributions.Normal(loc=mean, scale=tf.sqrt(variance));
}
public void predict (NDArray X)
{
// assert self.dist is not None
// nb_classes, nb_features = map(int, self.dist.scale.shape)
throw new NotFiniteNumberException();
}
}
}