using NumSharp; using System; using System.Collections.Generic; using System.Text; using Tensorflow; namespace TensorFlowNET.Examples { /// /// A linear regression learning algorithm example using TensorFlow library. /// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py /// public class LinearRegression : Python, IExample { public int Priority => 3; public bool Enabled { get; set; } = true; public string Name => "Linear Regression"; public bool ImportGraph { get; set; } = false; public int training_epochs = 1000; // Parameters float learning_rate = 0.01f; int display_step = 50; NumPyRandom rng = np.random; NDArray train_X, train_Y; int n_samples; public bool Run() { // Training Data PrepareData(); // tf Graph Input var X = tf.placeholder(tf.float32); var Y = tf.placeholder(tf.float32); // Set model weights // We can set a fixed init value in order to debug // var rnd1 = rng.randn(); // var rnd2 = rng.randn(); var W = tf.Variable(-0.06f, name: "weight"); var b = tf.Variable(-0.73f, name: "bias"); // Construct a linear model var pred = tf.add(tf.multiply(X, W), b); // Mean squared error var cost = tf.reduce_sum(tf.pow(pred - Y, 2.0f)) / (2.0f * n_samples); // Gradient descent // Note, minimize() knows to modify W and b because Variable objects are trainable=True by default var optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost); // Initialize the variables (i.e. assign their default value) var init = tf.global_variables_initializer(); // Start training return with(tf.Session(), sess => { // Run the initializer sess.run(init); // Fit all training data for (int epoch = 0; epoch < training_epochs; epoch++) { foreach (var (x, y) in zip(train_X, train_Y)) { sess.run(optimizer, new FeedItem(X, x), new FeedItem(Y, y)); } // Display logs per epoch step if ((epoch + 1) % display_step == 0) { var c = sess.run(cost, new FeedItem(X, train_X), new FeedItem(Y, train_Y)); Console.WriteLine($"Epoch: {epoch + 1} cost={c} " + $"W={sess.run(W)} b={sess.run(b)}"); } } Console.WriteLine("Optimization Finished!"); var training_cost = sess.run(cost, new FeedItem(X, train_X), new FeedItem(Y, train_Y)); Console.WriteLine($"Training cost={training_cost} W={sess.run(W)} b={sess.run(b)}"); // Testing example var test_X = np.array(6.83f, 4.668f, 8.9f, 7.91f, 5.7f, 8.7f, 3.1f, 2.1f); var test_Y = np.array(1.84f, 2.273f, 3.2f, 2.831f, 2.92f, 3.24f, 1.35f, 1.03f); Console.WriteLine("Testing... (Mean square loss Comparison)"); var testing_cost = sess.run(tf.reduce_sum(tf.pow(pred - Y, 2.0f)) / (2.0f * test_X.shape[0]), new FeedItem(X, test_X), new FeedItem(Y, test_Y)); Console.WriteLine($"Testing cost={testing_cost}"); var diff = Math.Abs((float)training_cost - (float)testing_cost); Console.WriteLine($"Absolute mean square loss difference: {diff}"); return diff < 0.01; }); } public void PrepareData() { train_X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f, 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f); train_Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f, 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f); n_samples = train_X.shape[0]; } } }