using NumSharp;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using Console = Colorful.Console;
using System.Linq;
using System.Net;
using System.Text;
using Tensorflow;
using System.Drawing;
using static Tensorflow.Python;
namespace TensorFlowNET.Examples
{
///
/// Inception v3 is a widely-used image recognition model
/// that has been shown to attain greater than 78.1% accuracy on the ImageNet dataset.
/// The model is the culmination of many ideas developed by multiple researchers over the years.
///
public class ImageRecognitionInception : IExample
{
public bool Enabled { get; set; } = true;
public string Name => "Image Recognition Inception";
public bool IsImportingGraph { get; set; } = false;
string dir = "ImageRecognitionInception";
string pbFile = "tensorflow_inception_graph.pb";
string labelFile = "imagenet_comp_graph_label_strings.txt";
List file_ndarrays = new List();
public bool Run()
{
PrepareData();
var graph = new Graph().as_default();
//import GraphDef from pb file
graph.Import(Path.Join(dir, pbFile));
var input_name = "input";
var output_name = "output";
var input_operation = graph.OperationByName(input_name);
var output_operation = graph.OperationByName(output_name);
var labels = File.ReadAllLines(Path.Join(dir, labelFile));
var result_labels = new List();
var sw = new Stopwatch();
with(tf.Session(graph), sess =>
{
foreach (var nd in file_ndarrays)
{
sw.Restart();
var results = sess.run(output_operation.outputs[0], new FeedItem(input_operation.outputs[0], nd));
results = np.squeeze(results);
int idx = np.argmax(results);
Console.WriteLine($"{labels[idx]} {results[idx]} in {sw.ElapsedMilliseconds}ms", Color.Tan);
result_labels.Add(labels[idx]);
}
});
return result_labels.Contains("military uniform");
}
private NDArray ReadTensorFromImageFile(string file_name,
int input_height = 224,
int input_width = 224,
int input_mean = 117,
int input_std = 1)
{
return with(tf.Graph().as_default(), graph =>
{
var file_reader = tf.read_file(file_name, "file_reader");
var decodeJpeg = tf.image.decode_jpeg(file_reader, channels: 3, name: "DecodeJpeg");
var cast = tf.cast(decodeJpeg, tf.float32);
var dims_expander = tf.expand_dims(cast, 0);
var resize = tf.constant(new int[] { input_height, input_width });
var bilinear = tf.image.resize_bilinear(dims_expander, resize);
var sub = tf.subtract(bilinear, new float[] { input_mean });
var normalized = tf.divide(sub, new float[] { input_std });
return with(tf.Session(graph), sess => sess.run(normalized));
});
}
public void PrepareData()
{
Directory.CreateDirectory(dir);
// get model file
string url = "https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip";
Utility.Web.Download(url, dir, "inception5h.zip");
Utility.Compress.UnZip(Path.Join(dir, "inception5h.zip"), dir);
// download sample picture
Directory.CreateDirectory(Path.Join(dir, "img"));
url = $"https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/label_image/data/grace_hopper.jpg";
Utility.Web.Download(url, Path.Join(dir, "img"), "grace_hopper.jpg");
url = $"https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/data/shasta-daisy.jpg";
Utility.Web.Download(url, Path.Join(dir, "img"), "shasta-daisy.jpg");
// load image file
var files = Directory.GetFiles(Path.Join(dir, "img"));
for (int i = 0; i < files.Length; i++)
{
var nd = ReadTensorFromImageFile(files[i]);
file_ndarrays.Add(nd);
}
}
public Graph ImportGraph()
{
throw new NotImplementedException();
}
public Graph BuildGraph()
{
throw new NotImplementedException();
}
public void Train(Session sess)
{
throw new NotImplementedException();
}
public void Predict(Session sess)
{
throw new NotImplementedException();
}
public void Test(Session sess)
{
throw new NotImplementedException();
}
}
}