/***************************************************************************** Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ******************************************************************************/ using NumSharp; using System; using System.Collections.Generic; using System.IO; using System.Text; using Tensorflow; using TensorFlowNET.Examples.Utility; using System.Drawing; using System.Drawing.Drawing2D; using System.Linq; using static Tensorflow.Python; namespace TensorFlowNET.Examples { public class ObjectDetection : IExample { public bool Enabled { get; set; } = true; public string Name => "Object Detection"; public bool IsImportingGraph { get; set; } = true; public float MIN_SCORE = 0.5f; string modelDir = "ssd_mobilenet_v1_coco_2018_01_28"; string imageDir = "images"; string pbFile = "frozen_inference_graph.pb"; string labelFile = "mscoco_label_map.pbtxt"; string picFile = "input.jpg"; NDArray imgArr; public bool Run() { PrepareData(); // read in the input image imgArr = ReadTensorFromImageFile(Path.Join(imageDir, "input.jpg")); var graph = IsImportingGraph ? ImportGraph() : BuildGraph(); with(tf.Session(graph), sess => Predict(sess)); return true; } public Graph ImportGraph() { var graph = new Graph().as_default(); graph.Import(Path.Join(modelDir, pbFile)); return graph; } public void Predict(Session sess) { var graph = tf.get_default_graph(); Tensor tensorNum = graph.OperationByName("num_detections"); Tensor tensorBoxes = graph.OperationByName("detection_boxes"); Tensor tensorScores = graph.OperationByName("detection_scores"); Tensor tensorClasses = graph.OperationByName("detection_classes"); Tensor imgTensor = graph.OperationByName("image_tensor"); Tensor[] outTensorArr = new Tensor[] { tensorNum, tensorBoxes, tensorScores, tensorClasses }; var results = sess.run(outTensorArr, new FeedItem(imgTensor, imgArr)); NDArray[] resultArr = results.Data(); buildOutputImage(resultArr); } public void PrepareData() { // get model file string url = "http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz"; Web.Download(url, modelDir, "ssd_mobilenet_v1_coco.tar.gz"); Compress.ExtractTGZ(Path.Join(modelDir, "ssd_mobilenet_v1_coco.tar.gz"), "./"); // download sample picture url = $"https://github.com/tensorflow/models/raw/master/research/object_detection/test_images/image2.jpg"; Web.Download(url, imageDir, "input.jpg"); // download the pbtxt file url = $"https://raw.githubusercontent.com/tensorflow/models/master/research/object_detection/data/mscoco_label_map.pbtxt"; Web.Download(url, modelDir, "mscoco_label_map.pbtxt"); } private NDArray ReadTensorFromImageFile(string file_name) { return with(tf.Graph().as_default(), graph => { var file_reader = tf.read_file(file_name, "file_reader"); var decodeJpeg = tf.image.decode_jpeg(file_reader, channels: 3, name: "DecodeJpeg"); var casted = tf.cast(decodeJpeg, TF_DataType.TF_UINT8); var dims_expander = tf.expand_dims(casted, 0); return with(tf.Session(graph), sess => sess.run(dims_expander)); }); } private void buildOutputImage(NDArray[] resultArr) { // get pbtxt items PbtxtItems pbTxtItems = PbtxtParser.ParsePbtxtFile(Path.Join(modelDir, "mscoco_label_map.pbtxt")); // get bitmap Bitmap bitmap = new Bitmap(Path.Join(imageDir, "input.jpg")); float[] scores = resultArr[2].Data(); for (int i=0; i MIN_SCORE) { float[] boxes = resultArr[1].Data(); float top = boxes[i * 4] * bitmap.Height; float left = boxes[i * 4 + 1] * bitmap.Width; float bottom = boxes[i * 4 + 2] * bitmap.Height; float right = boxes[i * 4 + 3] * bitmap.Width; Rectangle rect = new Rectangle() { X = (int)left, Y = (int)top, Width = (int)(right - left), Height = (int)(bottom - top) }; float[] ids = resultArr[3].Data(); string name = pbTxtItems.items.Where(w => w.id == (int)ids[i]).Select(s=>s.display_name).FirstOrDefault(); drawObjectOnBitmap(bitmap, rect, score, name); } } string path = Path.Join(imageDir, "output.jpg"); bitmap.Save(path); Console.WriteLine($"Processed image is saved as {path}"); } private void drawObjectOnBitmap(Bitmap bmp, Rectangle rect, float score, string name) { using (Graphics graphic = Graphics.FromImage(bmp)) { graphic.SmoothingMode = SmoothingMode.AntiAlias; using (Pen pen = new Pen(Color.Red, 2)) { graphic.DrawRectangle(pen, rect); Point p = new Point(rect.Right + 5, rect.Top + 5); string text = string.Format("{0}:{1}%", name, (int)(score * 100)); graphic.DrawString(text, new Font("Verdana", 8), Brushes.Red, p); } } } public Graph BuildGraph() => throw new NotImplementedException(); public void Train(Session sess) => throw new NotImplementedException(); public void Test(Session sess) => throw new NotImplementedException(); } }