using Microsoft.VisualStudio.TestTools.UnitTesting;
using System.Collections.Generic;
using Tensorflow.NumPy;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;
namespace Tensorflow.Keras.UnitTest.Layers
{
///
/// https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers
///
[TestClass]
public class LayersTest : EagerModeTestBase
{
[TestMethod]
public void AveragePooling2D()
{
var x = tf.constant(new float[,]
{
{ 1, 2, 3 },
{ 4, 5, 6 },
{ 7, 8, 9 }
});
x = tf.reshape(x, (1, 3, 3, 1));
var avg_pool_2d = keras.layers.AveragePooling2D(pool_size: (2, 2),
strides: (1, 1), padding: "valid");
Tensor avg = avg_pool_2d.Apply(x);
Assert.AreEqual((1, 2, 2, 1), avg.shape);
Equal(new float[] { 3, 4, 6, 7 }, avg.ToArray());
}
[TestMethod]
public void InputLayer()
{
var model = keras.Sequential(new List
{
keras.layers.InputLayer(input_shape: 4),
keras.layers.Dense(8)
});
model.compile(optimizer: keras.optimizers.RMSprop(0.001f),
loss: keras.losses.MeanSquaredError(),
metrics: new[] { "accuracy" });
model.fit(np.zeros((10, 4), dtype: tf.float32), np.ones((10, 8), dtype: tf.float32));
}
[TestMethod]
public void Sequential()
{
var model = keras.Sequential();
model.add(keras.Input(shape: 16));
}
[TestMethod]
public void Functional()
{
var layers = keras.layers;
var inputs = keras.Input(shape: 784);
Assert.AreEqual((-1, 784), inputs.shape);
var dense = layers.Dense(64, activation: keras.activations.Relu);
var x = dense.Apply(inputs);
x = layers.Dense(64, activation: keras.activations.Relu).Apply(x);
var outputs = layers.Dense(10).Apply(x);
var model = keras.Model(inputs, outputs, name: "mnist_model");
model.summary();
}
///
/// Custom layer test, used in Dueling DQN
///
[TestMethod, Ignore]
public void TensorFlowOpLayer()
{
var layers = keras.layers;
var inputs = layers.Input(shape: 24);
var x = layers.Dense(128, activation: "relu").Apply(inputs);
var value = layers.Dense(24).Apply(x);
var adv = layers.Dense(1).Apply(x);
var mean = adv - tf.reduce_mean(adv, axis: 1, keepdims: true);
adv = layers.Subtract().Apply((adv, mean));
var outputs = layers.Add().Apply((value, adv));
var model = keras.Model(inputs, outputs);
model.compile(optimizer: keras.optimizers.RMSprop(0.001f),
loss: keras.losses.MeanSquaredError(),
metrics: new[] { "acc" });
model.summary();
Assert.AreEqual(model.Layers.Count, 8);
var result = model.predict(tf.constant(np.arange(24).astype(np.float32)[np.newaxis, Slice.All]));
Assert.AreEqual(result.shape, new Shape(1, 24));
model.fit(np.arange(24).astype(np.float32)[np.newaxis, Slice.All], np.arange(24).astype(np.float32)[np.newaxis, Slice.All], verbose: 0);
}
///
/// https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding
///
[TestMethod]
public void Embedding()
{
var model = keras.Sequential();
var layer = keras.layers.Embedding(1000, 64, input_length: 10);
model.add(layer);
var input_array = np.random.randint(1000, size: (32, 10));
model.compile("rmsprop", "mse", new[] { "accuracy" });
var output_array = model.predict(input_array);
Assert.AreEqual((32, 10, 64), output_array.shape);
}
///
/// https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
///
[TestMethod]
public void Dense()
{
// Create a `Sequential` model and add a Dense layer as the first layer.
var model = keras.Sequential();
model.add(keras.Input(shape: 16));
model.add(keras.layers.Dense(32, activation: keras.activations.Relu));
// Now the model will take as input arrays of shape (None, 16)
// and output arrays of shape (None, 32).
// Note that after the first layer, you don't need to specify
// the size of the input anymore:
model.add(keras.layers.Dense(32));
Assert.AreEqual((-1, 32), model.output_shape);
}
[TestMethod]
public void EinsumDense()
{
var ed = keras.layers.EinsumDense(
equation: "...b,bc->...c",
output_shape: 4,
bias_axes: "c",
bias_initializer: tf.constant_initializer(0.03),
kernel_initializer: tf.constant_initializer(0.5)
);
var inp = np.array(new[,] { { 1f, 2f }, { 3f, 4f } });
var expected_output = np.array(new[,] {{1.53f, 1.53f, 1.53f, 1.53f },
{ 3.53f, 3.53f, 3.53f, 3.53f }});
var actual_output = ed.Apply(inp)[0].numpy();
Assert.AreEqual(expected_output, actual_output);
}
[TestMethod]
public void Resizing()
{
var inputs = tf.random.uniform((10, 32, 32, 3));
var layer = keras.layers.preprocessing.Resizing(16, 16);
var output = layer.Apply(inputs);
Assert.AreEqual((10, 16, 16, 3), output.shape);
}
[TestMethod]
public void LayerNormalization()
{
var inputs = tf.constant(np.arange(10).reshape((5, 2)) * 10, dtype: tf.float32);
var layer = keras.layers.LayerNormalization(axis: 1);
Tensor output = layer.Apply(inputs);
Assert.AreEqual((5, 2), output.shape);
Assert.IsTrue(output[0].numpy().Equals(new[] { -0.99998f, 0.99998f }));
}
///
/// https://www.tensorflow.org/api_docs/python/tf/keras/layers/Normalization
///
[TestMethod]
public void Normalization()
{
// Calculate a global mean and variance by analyzing the dataset in adapt().
var adapt_data = np.array(new[] { 1f, 2f, 3f, 4f, 5f });
var input_data = np.array(new[] { 1f, 2f, 3f });
var layer = tf.keras.layers.Normalization(axis: null);
layer.adapt(adapt_data);
var x = layer.Apply(input_data);
Assert.AreEqual(x.numpy(), new[] { -1.4142135f, -0.70710677f, 0f });
// Calculate a mean and variance for each index on the last axis.
adapt_data = np.array(new[,]
{
{ 0, 7, 4 },
{ 2, 9, 6 },
{ 0, 7, 4 },
{ 2, 9, 6 }
}, dtype: tf.float32);
input_data = np.array(new[,] { { 0, 7, 4 } }, dtype: tf.float32);
layer = tf.keras.layers.Normalization(axis: -1);
layer.adapt(adapt_data);
x = layer.Apply(input_data);
Equal(x.numpy().ToArray(), new[] { -1f, -1f, -1f });
// Pass the mean and variance directly.
input_data = np.array(new[,] { { 1f }, { 2f }, { 3f } }, dtype: tf.float32);
layer = tf.keras.layers.Normalization(mean: 3f, variance: 2f);
x = layer.Apply(input_data);
Equal(x.numpy().ToArray(), new[] { -1.4142135f, -0.70710677f, 0f });
// Use the layer to de-normalize inputs (after adapting the layer).
adapt_data = np.array(new[,]
{
{ 0, 7, 4 },
{ 2, 9, 6 },
{ 0, 7, 4 },
{ 2, 9, 6 }
}, dtype: tf.float32);
input_data = np.array(new[,] { { 1, 2, 3 } }, dtype: tf.float32);
layer = tf.keras.layers.Normalization(axis: -1, invert: true);
layer.adapt(adapt_data);
x = layer.Apply(input_data);
Equal(x.numpy().ToArray(), new[] { -2f, -10f, -8f });
}
///
/// https://www.tensorflow.org/api_docs/python/tf/keras/layers/CategoryEncoding
///
[TestMethod]
public void CategoryEncoding()
{
// one-hot
var inputs = np.array(new[] { 3, 2, 0, 1 });
var layer = tf.keras.layers.CategoryEncoding(4);
Tensor output = layer.Apply(inputs);
Assert.AreEqual((4, 4), output.shape);
Assert.IsTrue(output[0].numpy().Equals(new[] { 0, 0, 0, 1f }));
Assert.IsTrue(output[1].numpy().Equals(new[] { 0, 0, 1, 0f }));
Assert.IsTrue(output[2].numpy().Equals(new[] { 1, 0, 0, 0f }));
Assert.IsTrue(output[3].numpy().Equals(new[] { 0, 1, 0, 0f }));
// multi-hot
inputs = np.array(new[,]
{
{ 0, 1 },
{ 0, 0 },
{ 1, 2 },
{ 3, 1 }
});
layer = tf.keras.layers.CategoryEncoding(4, output_mode: "multi_hot");
output = layer.Apply(inputs);
Assert.IsTrue(output[0].numpy().Equals(new[] { 1, 1, 0, 0f }));
Assert.IsTrue(output[1].numpy().Equals(new[] { 1, 0, 0, 0f }));
Assert.IsTrue(output[2].numpy().Equals(new[] { 0, 1, 1, 0f }));
Assert.IsTrue(output[3].numpy().Equals(new[] { 0, 1, 0, 1f }));
// using weighted inputs in "count" mode
inputs = np.array(new[,]
{
{ 0, 1 },
{ 0, 0 },
{ 1, 2 },
{ 3, 1 }
});
var weights = np.array(new[,]
{
{ 0.1f, 0.2f },
{ 0.1f, 0.1f },
{ 0.2f, 0.3f },
{ 0.4f, 0.2f }
});
layer = tf.keras.layers.CategoryEncoding(4, output_mode: "count", count_weights: weights);
output = layer.Apply(inputs);
Assert.IsTrue(output[0].numpy().Equals(new[] { 0.1f, 0.2f, 0f, 0f }));
Assert.IsTrue(output[1].numpy().Equals(new[] { 0.2f, 0f, 0f, 0f }));
Assert.IsTrue(output[2].numpy().Equals(new[] { 0f, 0.2f, 0.3f, 0f }));
Assert.IsTrue(output[3].numpy().Equals(new[] { 0f, 0.2f, 0f, 0.4f }));
}
}
}