using System;
using System.Collections.Generic;
using System.Text;
using Tensorflow;
using NumSharp.Core;
using System.Linq;
namespace TensorFlowNET.Examples
{
///
/// https://github.com/nicolov/naive_bayes_tensorflow
///
public class NaiveBayesClassifier : Python, IExample
{
public Normal dist { get; set; }
public void Run()
{
np.array(1.0f, 1.0f);
var X = np.array(new float[][] { new float[] { 1.0f, 1.0f }, new float[] { 2.0f, 2.0f }, new float[] { -1.0f, -1.0f }, new float[] { -2.0f, -2.0f }, new float[] { 1.0f, -1.0f }, new float[] { 2.0f, -2.0f }, });
var y = np.array(0,0,1,1,2,2);
fit(X, y);
// Create a regular grid and classify each point
}
public void fit(NDArray X, NDArray y)
{
NDArray unique_y = y.unique();
Dictionary>> dic = new Dictionary>>();
// Init uy in dic
foreach (int uy in unique_y.Data())
{
dic.Add(uy, new List>());
}
// Separate training points by class
// Shape : nb_classes * nb_samples * nb_features
int maxCount = 0;
for (int i = 0; i < y.size; i++)
{
long curClass = (long)y[i];
List> l = dic[curClass];
List pair = new List();
pair.Add((float)X[i,0]);
pair.Add((float)X[i, 1]);
l.Add(pair);
if (l.Count > maxCount)
{
maxCount = l.Count;
}
dic[curClass] = l;
}
float[,,] points = new float[dic.Count, maxCount, X.shape[1]];
foreach (KeyValuePair>> kv in dic)
{
int j = (int) kv.Key;
for (int i = 0; i < maxCount; i++)
{
for (int k = 0; k < X.shape[1]; k++)
{
points[j, i, k] = kv.Value[i][k];
}
}
}
NDArray points_by_class = np.array(points);
// estimate mean and variance for each class / feature
// shape : nb_classes * nb_features
var cons = tf.constant(points_by_class);
var tup = tf.nn.moments(cons, new int[]{1});
var mean = tup.Item1;
var variance = tup.Item2;
// Create a 3x2 univariate normal distribution with the
// Known mean and variance
var dist = tf.distributions.Normal(mean, tf.sqrt(variance));
this.dist = dist;
}
public Tensor predict (NDArray X)
{
if (dist == null)
{
throw new ArgumentNullException("cant not find the model (normal distribution)!");
}
int nb_classes = (int) dist.scale().shape[0];
int nb_features = (int)dist.scale().shape[1];
// Conditional probabilities log P(x|c) with shape
// (nb_samples, nb_classes)
Tensor tile = tf.tile(new Tensor(X), new Tensor(new int[] { -1, nb_classes, nb_features }));
Tensor r = tf.reshape(tile, new Tensor(new int[] { -1, nb_classes, nb_features }));
var cond_probs = tf.reduce_sum(dist.log_prob(r));
// uniform priors
var priors = np.log(np.array((1.0 / nb_classes) * nb_classes));
// posterior log probability, log P(c) + log P(x|c)
var joint_likelihood = tf.add(new Tensor(priors), cond_probs);
// normalize to get (log)-probabilities
var norm_factor = tf.reduce_logsumexp(joint_likelihood, new int[] { 1 }, true);
var log_prob = joint_likelihood - norm_factor;
// exp to get the actual probabilities
return tf.exp(log_prob);
}
}
}