using NumSharp; using System; using System.Collections.Generic; using System.Text; using Tensorflow; using TensorFlowNET.Examples.Utility; using static Tensorflow.Python; namespace TensorFlowNET.Examples.ImageProcess { /// /// Convolutional Neural Network classifier for Hand Written Digits /// CNN architecture with two convolutional layers, followed by two fully-connected layers at the end. /// Use Stochastic Gradient Descent (SGD) optimizer. /// http://www.easy-tensorflow.com/tf-tutorials/convolutional-neural-nets-cnns/cnn1 /// public class DigitRecognitionCNN : IExample { public bool Enabled { get; set; } = true; public bool IsImportingGraph { get; set; } = false; public string Name => "MNIST CNN"; const int img_h = 28; const int img_w = 28; int img_size_flat = img_h * img_w; // 784, the total number of pixels int n_classes = 10; // Number of classes, one class per digit // Hyper-parameters int epochs = 10; int batch_size = 100; float learning_rate = 0.001f; int h1 = 200; // number of nodes in the 1st hidden layer Datasets mnist; Tensor x, y; Tensor loss, accuracy; Operation optimizer; int display_freq = 100; float accuracy_test = 0f; float loss_test = 1f; public bool Run() { PrepareData(); BuildGraph(); with(tf.Session(), sess => { Train(sess); Test(sess); }); return loss_test < 0.09 && accuracy_test > 0.95; } public Graph BuildGraph() { var graph = new Graph().as_default(); // Placeholders for inputs (x) and outputs(y) x = tf.placeholder(tf.float32, shape: (-1, img_size_flat), name: "X"); y = tf.placeholder(tf.float32, shape: (-1, n_classes), name: "Y"); // Create a fully-connected layer with h1 nodes as hidden layer var fc1 = fc_layer(x, h1, "FC1", use_relu: true); // Create a fully-connected layer with n_classes nodes as output layer var output_logits = fc_layer(fc1, n_classes, "OUT", use_relu: false); // Define the loss function, optimizer, and accuracy var logits = tf.nn.softmax_cross_entropy_with_logits(labels: y, logits: output_logits); loss = tf.reduce_mean(logits, name: "loss"); optimizer = tf.train.AdamOptimizer(learning_rate: learning_rate, name: "Adam-op").minimize(loss); var correct_prediction = tf.equal(tf.argmax(output_logits, 1), tf.argmax(y, 1), name: "correct_pred"); accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name: "accuracy"); // Network predictions var cls_prediction = tf.argmax(output_logits, axis: 1, name: "predictions"); return graph; } private Tensor fc_layer(Tensor x, int num_units, string name, bool use_relu = true) { var in_dim = x.shape[1]; var initer = tf.truncated_normal_initializer(stddev: 0.01f); var W = tf.get_variable("W_" + name, dtype: tf.float32, shape: (in_dim, num_units), initializer: initer); var initial = tf.constant(0f, num_units); var b = tf.get_variable("b_" + name, dtype: tf.float32, initializer: initial); var layer = tf.matmul(x, W) + b; if (use_relu) layer = tf.nn.relu(layer); return layer; } public Graph ImportGraph() => throw new NotImplementedException(); public void Predict(Session sess) => throw new NotImplementedException(); public void PrepareData() { mnist = MNIST.read_data_sets("mnist", one_hot: true); } public void Train(Session sess) { // Number of training iterations in each epoch var num_tr_iter = mnist.train.labels.len / batch_size; var init = tf.global_variables_initializer(); sess.run(init); float loss_val = 100.0f; float accuracy_val = 0f; foreach (var epoch in range(epochs)) { print($"Training epoch: {epoch + 1}"); // Randomly shuffle the training data at the beginning of each epoch var (x_train, y_train) = mnist.Randomize(mnist.train.data, mnist.train.labels); foreach (var iteration in range(num_tr_iter)) { var start = iteration * batch_size; var end = (iteration + 1) * batch_size; var (x_batch, y_batch) = mnist.GetNextBatch(x_train, y_train, start, end); // Run optimization op (backprop) sess.run(optimizer, new FeedItem(x, x_batch), new FeedItem(y, y_batch)); if (iteration % display_freq == 0) { // Calculate and display the batch loss and accuracy var result = sess.run(new[] { loss, accuracy }, new FeedItem(x, x_batch), new FeedItem(y, y_batch)); loss_val = result[0]; accuracy_val = result[1]; print($"iter {iteration.ToString("000")}: Loss={loss_val.ToString("0.0000")}, Training Accuracy={accuracy_val.ToString("P")}"); } } // Run validation after every epoch var results1 = sess.run(new[] { loss, accuracy }, new FeedItem(x, mnist.validation.data), new FeedItem(y, mnist.validation.labels)); loss_val = results1[0]; accuracy_val = results1[1]; print("---------------------------------------------------------"); print($"Epoch: {epoch + 1}, validation loss: {loss_val.ToString("0.0000")}, validation accuracy: {accuracy_val.ToString("P")}"); print("---------------------------------------------------------"); } } public void Test(Session sess) { var result = sess.run(new[] { loss, accuracy }, new FeedItem(x, mnist.test.data), new FeedItem(y, mnist.test.labels)); loss_test = result[0]; accuracy_test = result[1]; print("---------------------------------------------------------"); print($"Test loss: {loss_test.ToString("0.0000")}, test accuracy: {accuracy_test.ToString("P")}"); print("---------------------------------------------------------"); } } }