using Microsoft.VisualStudio.TestTools.UnitTesting; using NumSharp; using Tensorflow; using Tensorflow.Operations; using static Tensorflow.KerasApi; namespace TensorFlowNET.Keras.UnitTest { [TestClass] public class LayersConvolutionTest : EagerModeTestBase { [TestMethod] public void BasicConv1D() { var filters = 8; var conv = keras.layers.Conv1D(filters, activation: "linear"); var x = np.arange(256.0f).reshape(8, 8, 4); var y = conv.Apply(x); Assert.AreEqual(3, y.shape.ndim); Assert.AreEqual(x.shape[0], y.shape[0]); Assert.AreEqual(x.shape[1] - 4, y.shape[1]); Assert.AreEqual(filters, y.shape[2]); } [TestMethod] public void BasicConv1D_ksize() { var filters = 8; var conv = keras.layers.Conv1D(filters, kernel_size: 3, activation: "linear"); var x = np.arange(256.0f).reshape(8, 8, 4); var y = conv.Apply(x); Assert.AreEqual(3, y.shape.ndim); Assert.AreEqual(x.shape[0], y.shape[0]); Assert.AreEqual(x.shape[1] - 2, y.shape[1]); Assert.AreEqual(filters, y.shape[2]); } [TestMethod] public void BasicConv1D_ksize_same() { var filters = 8; var conv = keras.layers.Conv1D(filters, kernel_size: 3, padding: "same", activation: "linear"); var x = np.arange(256.0f).reshape(8, 8, 4); var y = conv.Apply(x); Assert.AreEqual(3, y.shape.ndim); Assert.AreEqual(x.shape[0], y.shape[0]); Assert.AreEqual(x.shape[1], y.shape[1]); Assert.AreEqual(filters, y.shape[2]); } [TestMethod] public void BasicConv1D_ksize_strides() { var filters = 8; var conv = keras.layers.Conv1D(filters, kernel_size: 3, strides: 2, activation: "linear"); var x = np.arange(256.0f).reshape(8, 8, 4); var y = conv.Apply(x); Assert.AreEqual(3, y.shape.ndim); Assert.AreEqual(x.shape[0], y.shape[0]); Assert.AreEqual(x.shape[1] - 5, y.shape[1]); Assert.AreEqual(filters, y.shape[2]); } [TestMethod] public void BasicConv1D_ksize_dilations() { var filters = 8; var conv = keras.layers.Conv1D(filters, kernel_size: 3, dilation_rate: 2, activation: "linear"); var x = np.arange(256.0f).reshape(8, 8, 4); var y = conv.Apply(x); Assert.AreEqual(3, y.shape.ndim); Assert.AreEqual(x.shape[0], y.shape[0]); Assert.AreEqual(x.shape[1] - 4, y.shape[1]); Assert.AreEqual(filters, y.shape[2]); } [TestMethod] public void BasicConv1D_ksize_dilation_same() { var filters = 8; var conv = keras.layers.Conv1D(filters, kernel_size: 3, dilation_rate: 2, padding: "same", activation: "linear"); var x = np.arange(256.0f).reshape(8, 8, 4); var y = conv.Apply(x); Assert.AreEqual(3, y.shape.ndim); Assert.AreEqual(x.shape[0], y.shape[0]); Assert.AreEqual(x.shape[1], y.shape[1]); Assert.AreEqual(filters, y.shape[2]); } [TestMethod] public void BasicConv2D() { var filters = 8; var conv = keras.layers.Conv2D(filters, activation: "linear"); var x = np.arange(256.0f).reshape(1,8,8,4); var y = conv.Apply(x); Assert.AreEqual(4, y.shape.ndim); Assert.AreEqual(x.shape[0], y.shape[0]); Assert.AreEqual(x.shape[1] - 4, y.shape[1]); Assert.AreEqual(x.shape[2] - 4, y.shape[2]); Assert.AreEqual(filters, y.shape[3]); } [TestMethod] public void BasicConv2D_ksize() { var filters = 8; var conv = keras.layers.Conv2D(filters, kernel_size: 3, activation: "linear"); var x = np.arange(256.0f).reshape(1, 8, 8, 4); var y = conv.Apply(x); Assert.AreEqual(4, y.shape.ndim); Assert.AreEqual(x.shape[0], y.shape[0]); Assert.AreEqual(x.shape[1] - 2, y.shape[1]); Assert.AreEqual(x.shape[2] - 2, y.shape[2]); Assert.AreEqual(filters, y.shape[3]); } [TestMethod] public void BasicConv2D_ksize_same() { var filters = 8; var conv = keras.layers.Conv2D(filters, kernel_size: 3, padding: "same", activation: "linear"); var x = np.arange(256.0f).reshape(1, 8, 8, 4); var y = conv.Apply(x); Assert.AreEqual(4, y.shape.ndim); Assert.AreEqual(x.shape[0], y.shape[0]); Assert.AreEqual(x.shape[1], y.shape[1]); Assert.AreEqual(x.shape[2], y.shape[2]); Assert.AreEqual(filters, y.shape[3]); } [TestMethod] public void BasicConv2D_ksize_strides() { var filters = 8; var conv = keras.layers.Conv2D(filters, kernel_size: 3, strides: 2, activation: "linear"); var x = np.arange(256.0f).reshape(1, 8, 8, 4); var y = conv.Apply(x); Assert.AreEqual(4, y.shape.ndim); Assert.AreEqual(x.shape[0], y.shape[0]); Assert.AreEqual(x.shape[1] - 5, y.shape[1]); Assert.AreEqual(x.shape[2] - 5, y.shape[2]); Assert.AreEqual(filters, y.shape[3]); } [TestMethod] public void BasicConv2D_ksize_dilation() { var filters = 8; var conv = keras.layers.Conv2D(filters, kernel_size: 3, dilation_rate: 2, activation: "linear"); var x = np.arange(256.0f).reshape(1, 8, 8, 4); var y = conv.Apply(x); Assert.AreEqual(4, y.shape.ndim); Assert.AreEqual(x.shape[0], y.shape[0]); Assert.AreEqual(x.shape[1] - 4, y.shape[1]); Assert.AreEqual(x.shape[2] - 4, y.shape[2]); Assert.AreEqual(filters, y.shape[3]); } [TestMethod] public void BasicConv2D_ksize_dilation_same() { var filters = 8; var conv = keras.layers.Conv2D(filters, kernel_size: 3, dilation_rate: 2, padding: "same", activation: "linear"); var x = np.arange(256.0f).reshape(1, 8, 8, 4); var y = conv.Apply(x); Assert.AreEqual(4, y.shape.ndim); Assert.AreEqual(x.shape[0], y.shape[0]); Assert.AreEqual(x.shape[1], y.shape[1]); Assert.AreEqual(x.shape[2], y.shape[2]); Assert.AreEqual(filters, y.shape[3]); } } }