using System; using System.Collections; using System.Collections.Generic; using System.Diagnostics; using System.IO; using System.Linq; using System.Text; using Newtonsoft.Json; using NumSharp; using Tensorflow; using Tensorflow.Sessions; using TensorFlowNET.Examples.Utility; using static Tensorflow.Python; namespace TensorFlowNET.Examples { /// /// https://github.com/dongjun-Lee/text-classification-models-tf /// public class CnnTextClassification : IExample { public bool Enabled { get; set; } = true; public string Name => "CNN Text Classification"; public int? DataLimit = null; public bool IsImportingGraph { get; set; } = false; private const string dataDir = "word_cnn"; private string dataFileName = "dbpedia_csv.tar.gz"; private const string TRAIN_PATH = "word_cnn/dbpedia_csv/train.csv"; private const string TEST_PATH = "word_cnn/dbpedia_csv/test.csv"; private const int NUM_CLASS = 14; private const int BATCH_SIZE = 64; private const int NUM_EPOCHS = 10; private const int WORD_MAX_LEN = 100; private const int CHAR_MAX_LEN = 1014; protected float loss_value = 0; int vocabulary_size = 50000; NDArray train_x, valid_x, train_y, valid_y; public bool Run() { PrepareData(); Train(); return true; } // TODO: this originally is an SKLearn utility function. it randomizes train and test which we don't do here private (NDArray, NDArray, NDArray, NDArray) train_test_split(NDArray x, NDArray y, float test_size = 0.3f) { Console.WriteLine("Splitting in Training and Testing data..."); int len = x.shape[0]; //int classes = y.Data().Distinct().Count(); //int samples = len / classes; int train_size = (int)Math.Round(len * (1 - test_size)); train_x = x[new Slice(stop: train_size), new Slice()]; valid_x = x[new Slice(start: train_size), new Slice()]; train_y = y[new Slice(stop: train_size)]; valid_y = y[new Slice(start: train_size)]; Console.WriteLine("\tDONE"); train_x = np.Load(Path.Join("word_cnn", "train_x.npy")); valid_x = np.Load(Path.Join("word_cnn", "valid_x.npy")); train_y = np.Load(Path.Join("word_cnn", "train_y.npy")); valid_y = np.Load(Path.Join("word_cnn", "valid_y.npy")); return (train_x, valid_x, train_y, valid_y); } private static void FillWithShuffledLabels(int[][] x, int[] y, int[][] shuffled_x, int[] shuffled_y, Random random, Dictionary> labels) { int i = 0; var label_keys = labels.Keys.ToArray(); while (i < shuffled_x.Length) { var key = label_keys[random.Next(label_keys.Length)]; var set = labels[key]; var index = set.First(); if (set.Count == 0) { labels.Remove(key); // remove the set as it is empty label_keys = labels.Keys.ToArray(); } shuffled_x[i] = x[index]; shuffled_y[i] = y[index]; i++; } } private IEnumerable<(NDArray, NDArray, int)> batch_iter(NDArray inputs, NDArray outputs, int batch_size, int num_epochs) { var num_batches_per_epoch = (len(inputs) - 1) / batch_size + 1; var total_batches = num_batches_per_epoch * num_epochs; foreach (var epoch in range(num_epochs)) { foreach (var batch_num in range(num_batches_per_epoch)) { var start_index = batch_num * batch_size; var end_index = Math.Min((batch_num + 1) * batch_size, len(inputs)); if (end_index <= start_index) break; yield return (inputs[new Slice(start_index, end_index)], outputs[new Slice(start_index, end_index)], total_batches); } } } public void PrepareData() { // full dataset https://github.com/le-scientifique/torchDatasets/raw/master/dbpedia_csv.tar.gz var url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/data/dbpedia_subset.zip"; Web.Download(url, dataDir, "dbpedia_subset.zip"); Compress.UnZip(Path.Combine(dataDir, "dbpedia_subset.zip"), Path.Combine(dataDir, "dbpedia_csv")); Console.WriteLine("Building dataset..."); int alphabet_size = 0; var word_dict = DataHelpers.build_word_dict(TRAIN_PATH); //vocabulary_size = len(word_dict); var (x, y) = DataHelpers.build_word_dataset(TRAIN_PATH, word_dict, WORD_MAX_LEN); Console.WriteLine("\tDONE "); var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f); Console.WriteLine("Training set size: " + train_x.len); Console.WriteLine("Test set size: " + valid_x.len); } public Graph ImportGraph() { var graph = tf.Graph().as_default(); // download graph meta data var meta_file = "word_cnn.meta"; var meta_path = Path.Combine("graph", meta_file); if (File.GetLastWriteTime(meta_path) < new DateTime(2019, 05, 11)) { // delete old cached file which contains errors Console.WriteLine("Discarding cached file: " + meta_path); if(File.Exists(meta_path)) File.Delete(meta_path); } var url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/" + meta_file; Web.Download(url, "graph", meta_file); Console.WriteLine("Import graph..."); tf.train.import_meta_graph(Path.Join("graph", meta_file)); Console.WriteLine("\tDONE "); return graph; } public Graph BuildGraph() { var graph = tf.Graph().as_default(); var embedding_size = 128; var learning_rate = 0.001f; var filter_sizes = new int[3, 4, 5]; var num_filters = 100; var document_max_len = 100; var x = tf.placeholder(tf.int32, new TensorShape(-1, document_max_len), name: "x"); var y = tf.placeholder(tf.int32, new TensorShape(-1), name: "y"); var is_training = tf.placeholder(tf.@bool, new TensorShape(), name: "is_training"); var global_step = tf.Variable(0, trainable: false); var keep_prob = tf.where(is_training, 0.5f, 1.0f); Tensor x_emb = null; with(tf.name_scope("embedding"), scope => { var init_embeddings = tf.random_uniform(new int[] { vocabulary_size, embedding_size }); var embeddings = tf.get_variable("embeddings", initializer: init_embeddings); x_emb = tf.nn.embedding_lookup(embeddings, x); x_emb = tf.expand_dims(x_emb, -1); }); var pooled_outputs = new List(); for (int len = 0; len < filter_sizes.Rank; len++) { int filter_size = filter_sizes.GetLength(len); var conv = tf.layers.conv2d( x_emb, filters: num_filters, kernel_size: new int[] { filter_size, embedding_size }, strides: new int[] { 1, 1 }, padding: "VALID", activation: tf.nn.relu()); var pool = tf.layers.max_pooling2d( conv, pool_size: new[] { document_max_len - filter_size + 1, 1 }, strides: new[] { 1, 1 }, padding: "VALID"); pooled_outputs.Add(pool); } var h_pool = tf.concat(pooled_outputs, 3); var h_pool_flat = tf.reshape(h_pool, new TensorShape(-1, num_filters * filter_sizes.Rank)); Tensor h_drop = null; with(tf.name_scope("dropout"), delegate { h_drop = tf.nn.dropout(h_pool_flat, keep_prob); }); Tensor logits = null; Tensor predictions = null; with(tf.name_scope("output"), delegate { logits = tf.layers.dense(h_drop, NUM_CLASS); predictions = tf.argmax(logits, -1, output_type: tf.int32); }); with(tf.name_scope("loss"), delegate { var sscel = tf.nn.sparse_softmax_cross_entropy_with_logits(logits: logits, labels: y); var loss = tf.reduce_mean(sscel); var adam = tf.train.AdamOptimizer(learning_rate); var optimizer = adam.minimize(loss, global_step: global_step); }); with(tf.name_scope("accuracy"), delegate { var correct_predictions = tf.equal(predictions, y); var accuracy = tf.reduce_mean(tf.cast(correct_predictions, TF_DataType.TF_FLOAT), name: "accuracy"); }); return graph; } private bool Train(Session sess, Graph graph) { var stopwatch = Stopwatch.StartNew(); sess.run(tf.global_variables_initializer()); var saver = tf.train.Saver(tf.global_variables()); var train_batches = batch_iter(train_x, train_y, BATCH_SIZE, NUM_EPOCHS); var num_batches_per_epoch = (len(train_x) - 1) / BATCH_SIZE + 1; double max_accuracy = 0; Tensor is_training = graph.OperationByName("is_training"); Tensor model_x = graph.OperationByName("x"); Tensor model_y = graph.OperationByName("y"); Tensor loss = graph.OperationByName("loss/Mean"); Operation optimizer = graph.OperationByName("loss/Adam"); Tensor global_step = graph.OperationByName("Variable"); Tensor accuracy = graph.OperationByName("accuracy/accuracy"); stopwatch = Stopwatch.StartNew(); int i = 0; foreach (var (x_batch, y_batch, total) in train_batches) { i++; var train_feed_dict = new FeedDict { [model_x] = x_batch, [model_y] = y_batch, [is_training] = true, }; var result = sess.run(new ITensorOrOperation[] { optimizer, global_step, loss }, train_feed_dict); loss_value = result[2]; var step = (int)result[1]; if (step % 10 == 0) { var estimate = TimeSpan.FromSeconds((stopwatch.Elapsed.TotalSeconds / i) * total); Console.WriteLine($"Training on batch {i}/{total} loss: {loss_value}. Estimated training time: {estimate}"); } if (step % 100 == 0) { // Test accuracy with validation data for each epoch. var valid_batches = batch_iter(valid_x, valid_y, BATCH_SIZE, 1); var (sum_accuracy, cnt) = (0.0f, 0); foreach (var (valid_x_batch, valid_y_batch, total_validation_batches) in valid_batches) { var valid_feed_dict = new FeedDict { [model_x] = valid_x_batch, [model_y] = valid_y_batch, [is_training] = false }; var result1 = sess.run(accuracy, valid_feed_dict); float accuracy_value = result1; sum_accuracy += accuracy_value; cnt += 1; } var valid_accuracy = sum_accuracy / cnt; print($"\nValidation Accuracy = {valid_accuracy}\n"); // Save model if (valid_accuracy > max_accuracy) { max_accuracy = valid_accuracy; saver.save(sess, $"{dataDir}/word_cnn.ckpt", global_step: step); print("Model is saved.\n"); } } } return false; } public bool Train() { var graph = IsImportingGraph ? ImportGraph() : BuildGraph(); string json = JsonConvert.SerializeObject(graph, Formatting.Indented); return with(tf.Session(graph), sess => Train(sess, graph)); } public bool Predict() { throw new NotImplementedException(); } } }