using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Text;
using Newtonsoft.Json;
using NumSharp;
using Tensorflow;
using Tensorflow.Sessions;
using TensorFlowNET.Examples.Utility;
using static Tensorflow.Python;
namespace TensorFlowNET.Examples
{
///
/// https://github.com/dongjun-Lee/text-classification-models-tf
///
public class CnnTextClassification : IExample
{
public bool Enabled { get; set; } = true;
public string Name => "CNN Text Classification";
public int? DataLimit = null;
public bool IsImportingGraph { get; set; } = false;
private const string dataDir = "word_cnn";
private string dataFileName = "dbpedia_csv.tar.gz";
private const string TRAIN_PATH = "word_cnn/dbpedia_csv/train.csv";
private const string TEST_PATH = "word_cnn/dbpedia_csv/test.csv";
private const int NUM_CLASS = 14;
private const int BATCH_SIZE = 64;
private const int NUM_EPOCHS = 10;
private const int WORD_MAX_LEN = 100;
private const int CHAR_MAX_LEN = 1014;
protected float loss_value = 0;
int vocabulary_size = 50000;
NDArray train_x, valid_x, train_y, valid_y;
public bool Run()
{
PrepareData();
Train();
return true;
}
// TODO: this originally is an SKLearn utility function. it randomizes train and test which we don't do here
private (NDArray, NDArray, NDArray, NDArray) train_test_split(NDArray x, NDArray y, float test_size = 0.3f)
{
Console.WriteLine("Splitting in Training and Testing data...");
int len = x.shape[0];
//int classes = y.Data().Distinct().Count();
//int samples = len / classes;
int train_size = (int)Math.Round(len * (1 - test_size));
train_x = x[new Slice(stop: train_size), new Slice()];
valid_x = x[new Slice(start: train_size), new Slice()];
train_y = y[new Slice(stop: train_size)];
valid_y = y[new Slice(start: train_size)];
Console.WriteLine("\tDONE");
train_x = np.Load(Path.Join("word_cnn", "train_x.npy"));
valid_x = np.Load(Path.Join("word_cnn", "valid_x.npy"));
train_y = np.Load(Path.Join("word_cnn", "train_y.npy"));
valid_y = np.Load(Path.Join("word_cnn", "valid_y.npy"));
return (train_x, valid_x, train_y, valid_y);
}
private static void FillWithShuffledLabels(int[][] x, int[] y, int[][] shuffled_x, int[] shuffled_y, Random random, Dictionary> labels)
{
int i = 0;
var label_keys = labels.Keys.ToArray();
while (i < shuffled_x.Length)
{
var key = label_keys[random.Next(label_keys.Length)];
var set = labels[key];
var index = set.First();
if (set.Count == 0)
{
labels.Remove(key); // remove the set as it is empty
label_keys = labels.Keys.ToArray();
}
shuffled_x[i] = x[index];
shuffled_y[i] = y[index];
i++;
}
}
private IEnumerable<(NDArray, NDArray, int)> batch_iter(NDArray inputs, NDArray outputs, int batch_size, int num_epochs)
{
var num_batches_per_epoch = (len(inputs) - 1) / batch_size + 1;
var total_batches = num_batches_per_epoch * num_epochs;
foreach (var epoch in range(num_epochs))
{
foreach (var batch_num in range(num_batches_per_epoch))
{
var start_index = batch_num * batch_size;
var end_index = Math.Min((batch_num + 1) * batch_size, len(inputs));
if (end_index <= start_index)
break;
yield return (inputs[new Slice(start_index, end_index)], outputs[new Slice(start_index, end_index)], total_batches);
}
}
}
public void PrepareData()
{
// full dataset https://github.com/le-scientifique/torchDatasets/raw/master/dbpedia_csv.tar.gz
var url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/data/dbpedia_subset.zip";
Web.Download(url, dataDir, "dbpedia_subset.zip");
Compress.UnZip(Path.Combine(dataDir, "dbpedia_subset.zip"), Path.Combine(dataDir, "dbpedia_csv"));
Console.WriteLine("Building dataset...");
int alphabet_size = 0;
var word_dict = DataHelpers.build_word_dict(TRAIN_PATH);
//vocabulary_size = len(word_dict);
var (x, y) = DataHelpers.build_word_dataset(TRAIN_PATH, word_dict, WORD_MAX_LEN);
Console.WriteLine("\tDONE ");
var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f);
Console.WriteLine("Training set size: " + train_x.len);
Console.WriteLine("Test set size: " + valid_x.len);
}
public Graph ImportGraph()
{
var graph = tf.Graph().as_default();
// download graph meta data
var meta_file = "word_cnn.meta";
var meta_path = Path.Combine("graph", meta_file);
if (File.GetLastWriteTime(meta_path) < new DateTime(2019, 05, 11))
{
// delete old cached file which contains errors
Console.WriteLine("Discarding cached file: " + meta_path);
if(File.Exists(meta_path))
File.Delete(meta_path);
}
var url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/" + meta_file;
Web.Download(url, "graph", meta_file);
Console.WriteLine("Import graph...");
tf.train.import_meta_graph(Path.Join("graph", meta_file));
Console.WriteLine("\tDONE ");
return graph;
}
public Graph BuildGraph()
{
var graph = tf.Graph().as_default();
var embedding_size = 128;
var learning_rate = 0.001f;
var filter_sizes = new int[3, 4, 5];
var num_filters = 100;
var document_max_len = 100;
var x = tf.placeholder(tf.int32, new TensorShape(-1, document_max_len), name: "x");
var y = tf.placeholder(tf.int32, new TensorShape(-1), name: "y");
var is_training = tf.placeholder(tf.@bool, new TensorShape(), name: "is_training");
var global_step = tf.Variable(0, trainable: false);
var keep_prob = tf.where(is_training, 0.5f, 1.0f);
Tensor x_emb = null;
with(tf.name_scope("embedding"), scope =>
{
var init_embeddings = tf.random_uniform(new int[] { vocabulary_size, embedding_size });
var embeddings = tf.get_variable("embeddings", initializer: init_embeddings);
x_emb = tf.nn.embedding_lookup(embeddings, x);
x_emb = tf.expand_dims(x_emb, -1);
});
var pooled_outputs = new List();
for (int len = 0; len < filter_sizes.Rank; len++)
{
int filter_size = filter_sizes.GetLength(len);
var conv = tf.layers.conv2d(
x_emb,
filters: num_filters,
kernel_size: new int[] { filter_size, embedding_size },
strides: new int[] { 1, 1 },
padding: "VALID",
activation: tf.nn.relu());
var pool = tf.layers.max_pooling2d(
conv,
pool_size: new[] { document_max_len - filter_size + 1, 1 },
strides: new[] { 1, 1 },
padding: "VALID");
pooled_outputs.Add(pool);
}
var h_pool = tf.concat(pooled_outputs, 3);
var h_pool_flat = tf.reshape(h_pool, new TensorShape(-1, num_filters * filter_sizes.Rank));
Tensor h_drop = null;
with(tf.name_scope("dropout"), delegate
{
h_drop = tf.nn.dropout(h_pool_flat, keep_prob);
});
Tensor logits = null;
Tensor predictions = null;
with(tf.name_scope("output"), delegate
{
logits = tf.layers.dense(h_drop, NUM_CLASS);
predictions = tf.argmax(logits, -1, output_type: tf.int32);
});
with(tf.name_scope("loss"), delegate
{
var sscel = tf.nn.sparse_softmax_cross_entropy_with_logits(logits: logits, labels: y);
var loss = tf.reduce_mean(sscel);
var adam = tf.train.AdamOptimizer(learning_rate);
var optimizer = adam.minimize(loss, global_step: global_step);
});
with(tf.name_scope("accuracy"), delegate
{
var correct_predictions = tf.equal(predictions, y);
var accuracy = tf.reduce_mean(tf.cast(correct_predictions, TF_DataType.TF_FLOAT), name: "accuracy");
});
return graph;
}
private bool Train(Session sess, Graph graph)
{
var stopwatch = Stopwatch.StartNew();
sess.run(tf.global_variables_initializer());
var saver = tf.train.Saver(tf.global_variables());
var train_batches = batch_iter(train_x, train_y, BATCH_SIZE, NUM_EPOCHS);
var num_batches_per_epoch = (len(train_x) - 1) / BATCH_SIZE + 1;
double max_accuracy = 0;
Tensor is_training = graph.OperationByName("is_training");
Tensor model_x = graph.OperationByName("x");
Tensor model_y = graph.OperationByName("y");
Tensor loss = graph.OperationByName("loss/Mean");
Operation optimizer = graph.OperationByName("loss/Adam");
Tensor global_step = graph.OperationByName("Variable");
Tensor accuracy = graph.OperationByName("accuracy/accuracy");
stopwatch = Stopwatch.StartNew();
int i = 0;
foreach (var (x_batch, y_batch, total) in train_batches)
{
i++;
var train_feed_dict = new FeedDict
{
[model_x] = x_batch,
[model_y] = y_batch,
[is_training] = true,
};
var result = sess.run(new ITensorOrOperation[] { optimizer, global_step, loss }, train_feed_dict);
loss_value = result[2];
var step = (int)result[1];
if (step % 10 == 0)
{
var estimate = TimeSpan.FromSeconds((stopwatch.Elapsed.TotalSeconds / i) * total);
Console.WriteLine($"Training on batch {i}/{total} loss: {loss_value}. Estimated training time: {estimate}");
}
if (step % 100 == 0)
{
// Test accuracy with validation data for each epoch.
var valid_batches = batch_iter(valid_x, valid_y, BATCH_SIZE, 1);
var (sum_accuracy, cnt) = (0.0f, 0);
foreach (var (valid_x_batch, valid_y_batch, total_validation_batches) in valid_batches)
{
var valid_feed_dict = new FeedDict
{
[model_x] = valid_x_batch,
[model_y] = valid_y_batch,
[is_training] = false
};
var result1 = sess.run(accuracy, valid_feed_dict);
float accuracy_value = result1;
sum_accuracy += accuracy_value;
cnt += 1;
}
var valid_accuracy = sum_accuracy / cnt;
print($"\nValidation Accuracy = {valid_accuracy}\n");
// Save model
if (valid_accuracy > max_accuracy)
{
max_accuracy = valid_accuracy;
saver.save(sess, $"{dataDir}/word_cnn.ckpt", global_step: step);
print("Model is saved.\n");
}
}
}
return false;
}
public bool Train()
{
var graph = IsImportingGraph ? ImportGraph() : BuildGraph();
string json = JsonConvert.SerializeObject(graph, Formatting.Indented);
return with(tf.Session(graph), sess => Train(sess, graph));
}
public bool Predict()
{
throw new NotImplementedException();
}
}
}