using NumSharp; using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Text; using Tensorflow; using Tensorflow.Clustering; using TensorFlowNET.Examples.Utility; namespace TensorFlowNET.Examples { /// /// Implement K-Means algorithm with TensorFlow.NET, and apply it to classify /// handwritten digit images. /// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/kmeans.py /// public class KMeansClustering : Python, IExample { public int Priority => 8; public bool Enabled { get; set; } = true; public string Name => "K-means Clustering"; public int? train_size = null; public int validation_size = 5000; public int? test_size = null; public int batch_size = 1024; // The number of samples per batch Datasets mnist; NDArray full_data_x; int num_steps = 10; // Total steps to train int k = 25; // The number of clusters int num_classes = 10; // The 10 digits int num_features = 784; // Each image is 28x28 pixels public bool Run() { PrepareData(); var graph = tf.Graph().as_default(); tf.train.import_meta_graph("graph/kmeans.meta"); // Input images var X = graph.get_operation_by_name("Placeholder").output; // tf.placeholder(tf.float32, shape: new TensorShape(-1, num_features)); // Labels (for assigning a label to a centroid and testing) var Y = graph.get_operation_by_name("Placeholder_1").output; // tf.placeholder(tf.float32, shape: new TensorShape(-1, num_classes)); // K-Means Parameters //var kmeans = new KMeans(X, k, distance_metric: KMeans.COSINE_DISTANCE, use_mini_batch: true); // Build KMeans graph //var training_graph = kmeans.training_graph(); var init_vars = tf.global_variables_initializer(); Tensor init_op = graph.get_operation_by_name("cond/Merge"); var train_op = graph.get_operation_by_name("group_deps"); Tensor avg_distance = graph.get_operation_by_name("Mean"); Tensor cluster_idx = graph.get_operation_by_name("Squeeze_1"); with(tf.Session(graph), sess => { sess.run(init_vars, new FeedItem(X, full_data_x)); sess.run(init_op, new FeedItem(X, full_data_x)); // Training NDArray result = null; var sw = new Stopwatch(); foreach (var i in range(1, num_steps + 1)) { sw.Start(); result = sess.run(new ITensorOrOperation[] { train_op, avg_distance, cluster_idx }, new FeedItem(X, full_data_x)); sw.Stop(); if (i % 5 == 0 || i == 1) print($"Step {i}, Avg Distance: {result[1]} Elapse: {sw.ElapsedMilliseconds}ms"); sw.Reset(); } var idx = result[2].Data(); // Assign a label to each centroid // Count total number of labels per centroid, using the label of each training // sample to their closest centroid (given by 'idx') var counts = np.zeros((k, num_classes), np.float32); sw.Start(); foreach (var i in range(idx.Length)) { var x = mnist.train.labels[i]; counts[idx[i]] += x; } sw.Stop(); print($"Assign a label to each centroid took {sw.ElapsedMilliseconds}ms"); // Assign the most frequent label to the centroid var labels_map_array = np.argmax(counts, 1); var labels_map = tf.convert_to_tensor(labels_map_array); // Evaluation ops // Lookup: centroid_id -> label }); return false; } public void PrepareData() { mnist = MnistDataSet.read_data_sets("mnist", one_hot: true, train_size: train_size, validation_size:validation_size, test_size:test_size); full_data_x = mnist.train.images; // download graph meta data string url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/kmeans.meta"; Web.Download(url, "graph", "kmeans.meta"); } } }