using Microsoft.VisualStudio.TestTools.UnitTesting;
using Tensorflow.NumPy;
using Tensorflow;
using static Tensorflow.Binding;
using System.Linq;
using Tensorflow.Operations;
namespace TensorFlowNET.UnitTest.ManagedAPI
{
[TestClass]
public class ArrayOpsTest : EagerModeTestBase
{
///
/// https://www.tensorflow.org/api_docs/python/tf/slice
///
[TestMethod]
public void Slice()
{
// Tests based on example code in TF documentation
var input_array = tf.constant(np.array(new int[] { 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6 }).reshape((3,2,3)));
var indices = tf.constant(np.array(new int[] { 0, 2 }));
var r1 = array_ops.slice(input_array, ops.convert_n_to_tensor(new object[] { 1, 0, 0 }), ops.convert_n_to_tensor(new object[] { 1, 1, 3 }));
Assert.AreEqual(new Shape(1,1,3), r1.shape);
var r1np = r1.numpy();
Assert.AreEqual(r1np[0, 0, 0], 3);
Assert.AreEqual(r1np[0, 0, 1], 3);
Assert.AreEqual(r1np[0, 0, 2], 3);
var r2 = array_ops.slice(input_array, ops.convert_n_to_tensor(new object[] { 1, 0, 0 }), ops.convert_n_to_tensor(new object[] { 1, 2, 3 }));
Assert.AreEqual(new Shape(1, 2, 3), r2.shape);
var r2np = r2.numpy();
Assert.AreEqual(r2np[0, 0, 0], 3);
Assert.AreEqual(r2np[0, 0, 1], 3);
Assert.AreEqual(r2np[0, 0, 2], 3);
Assert.AreEqual(r2np[0, 1, 0], 4);
Assert.AreEqual(r2np[0, 1, 1], 4);
Assert.AreEqual(r2np[0, 1, 2], 4);
var r3 = array_ops.slice(input_array, ops.convert_n_to_tensor(new object[] { 1, 0, 0 }), ops.convert_n_to_tensor(new object[] { 2, 1, 3 }));
Assert.AreEqual(new Shape(2, 1, 3), r3.shape);
var r3np = r3.numpy();
Assert.AreEqual(r3np[0, 0, 0], 3);
Assert.AreEqual(r3np[0, 0, 1], 3);
Assert.AreEqual(r3np[0, 0, 2], 3);
Assert.AreEqual(r3np[1, 0, 0], 5);
Assert.AreEqual(r3np[1, 0, 1], 5);
Assert.AreEqual(r3np[1, 0, 2], 5);
}
///
/// https://www.tensorflow.org/api_docs/python/tf/gather
///
[TestMethod]
public void Gather()
{
var input_array = tf.constant(np.arange(12).reshape((3, 4)).astype(np.float32));
var indices = tf.constant(np.array(new int[] { 0, 2 }));
var result = array_ops.gather(input_array, indices);
Assert.AreEqual(new Shape(2, 4), result.shape);
Assert.AreEqual(result.numpy()[0, 0], 0.0f);
Assert.AreEqual(result.numpy()[0, 1], 1.0f);
Assert.AreEqual(result.numpy()[1, 3], 11.0f);
// Tests based on example code in Python doc string for tf.gather()
var p1 = tf.random.normal(new Shape(5, 6, 7, 8));
var i1 = tf.random_uniform(new Shape(10, 11), maxval: 7, dtype: tf.int32);
var r1 = tf.gather(p1, i1, axis:2);
Assert.AreEqual(new Shape(5, 6, 10, 11, 8), r1.shape);
var p2 = tf.random.normal(new Shape(4,3));
var i2 = tf.constant(new int[,] { { 0, 2} });
var r2 = tf.gather(p2, i2, axis: 0);
Assert.AreEqual(new Shape(1, 2, 3), r2.shape);
var r3 = tf.gather(p2, i2, axis: 1);
Assert.AreEqual(new Shape(4,1,2), r3.shape);
}
///
/// https://www.tensorflow.org/api_docs/python/tf/TensorArray
///
[TestMethod]
public void TensorArray()
{
var ta = tf.TensorArray(tf.float32, size: 0, dynamic_size: true, clear_after_read: false);
ta.write(0, 10);
ta.write(1, 20);
ta.write(2, 30);
Assert.AreEqual(ta.read(0).numpy(), 10f);
Assert.AreEqual(ta.read(1).numpy(), 20f);
Assert.AreEqual(ta.read(2).numpy(), 30f);
}
///
/// https://www.tensorflow.org/api_docs/python/tf/reverse
///
[TestMethod]
public void ReverseArray()
{
var a = tf.random.normal((2, 3));
var b = tf.reverse(a, -1);
Assert.IsTrue(Equal(a[0].ToArray().Reverse().ToArray(), b[0].ToArray()));
Assert.IsTrue(Equal(a[1].ToArray().Reverse().ToArray(), b[1].ToArray()));
}
[TestMethod]
public void ReverseImgArray3D()
{
// 创建 sourceImg 数组
var sourceImgArray = new float[,,] {
{
{ 237, 28, 36 },
{ 255, 255, 255 },
{ 255, 255, 255 }
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
}
};
var sourceImg = ops.convert_to_tensor(sourceImgArray);
// 创建 lrImg 数组
var lrImgArray = new float[,,] {
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 237, 28, 36 }
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
}
};
var lrImg = ops.convert_to_tensor(lrImgArray);
var lr = tf.image.flip_left_right(sourceImg);
Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr.numpy().ToArray()), "tf.image.flip_left_right fail.");
var lr2 = tf.reverse(sourceImg, 1);
Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr2.numpy().ToArray()), "tf.reverse (axis=1) fail.");
var lr3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 1 }));
Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr3.numpy().ToArray()), "gen_array_ops.reverse_v2 axis=1 fail.");
// 创建 udImg 数组
var udImgArray = new float[,,] {
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
},
{
{ 237, 28, 36 },
{ 255, 255, 255 },
{ 255, 255, 255 }
}
};
var udImg = ops.convert_to_tensor(udImgArray);
var ud = tf.image.flip_up_down(sourceImg);
Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud.numpy().ToArray()), "tf.image.flip_up_down fail.");
var ud2 = tf.reverse(sourceImg, new Axis(0));
Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud2.numpy().ToArray()), "tf.reverse (axis=0) fail.");
var ud3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 0 }));
Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud3.numpy().ToArray()), "gen_array_ops.reverse_v2 axis=0 fail.");
}
[TestMethod]
public void ReverseImgArray4D()
{
// 原图左上角,加一张左右翻转后的图片
var m = new float[,,,] {
{
{
{ 237, 28, 36 },
{ 255, 255, 255 },
{ 255, 255, 255 }
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
}
},
{
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 237, 28, 36 }
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
}
}
};
var sourceImg = ops.convert_to_tensor(m);
var lrArray = new float[,,,] {
{
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 237, 28, 36 },
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
}
},
{
{
{ 237, 28, 36 },
{ 255, 255, 255 },
{ 255, 255, 255 },
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
}
}
};
var lrImg = ops.convert_to_tensor(lrArray);
// 创建 ud 数组
var udArray = new float[,,,] {
{
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
},
{
{ 237, 28, 36 },
{ 255, 255, 255 },
{ 255, 255, 255 }
}
},
{
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 237, 28, 36 }
}
}
};
var udImg = ops.convert_to_tensor(udArray);
var ud3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 1 }));
Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud3.numpy().ToArray()), "gen_array_ops.reverse_v2 axis=1 fail.");
var ud2 = tf.reverse(sourceImg, new Axis(1));
Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud2.numpy().ToArray()), "tf.reverse (axis=1) fail.");
var ud = tf.image.flip_up_down(sourceImg);
Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud.numpy().ToArray()), "tf.image.flip_up_down fail.");
// 左右翻转
var lr = tf.image.flip_left_right(sourceImg);
Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr.numpy().ToArray()), "tf.image.flip_left_right fail.");
var lr2 = tf.reverse(sourceImg, 0);
Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr2.numpy().ToArray()), "tf.reverse (axis=1) fail.");
var lr3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 0 }));
Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr3.numpy().ToArray()), "gen_array_ops.reverse_v2 axis=1 fail.");
}
[TestMethod]
public void ReverseImgArray4D_3x3()
{
// 原图左上角,加一张左右翻转后的图片
var m = new float[,,,] {
{
{
{ 237, 28, 36 },
{ 255, 255, 255 },
{ 255, 255, 255 }
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
}
},
{
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 237, 28, 36 }
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
}
}
};
var sourceImg = ops.convert_to_tensor(m);
var lrArray = new float[,,,] {
{
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 237, 28, 36 },
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
}
},
{
{
{ 237, 28, 36 },
{ 255, 255, 255 },
{ 255, 255, 255 },
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
}
}
};
var lrImg = ops.convert_to_tensor(lrArray);
// 创建 ud 数组
var udArray = new float[,,,] {
{
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
},
{
{ 237, 28, 36 },
{ 255, 255, 255 },
{ 255, 255, 255 }
}
},
{ {
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 255, 255, 255 }
},
{
{ 255, 255, 255 },
{ 255, 255, 255 },
{ 237, 28, 36 }
}
}
};
var udImg = ops.convert_to_tensor(udArray);
var ud3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 1 }));
Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud3.numpy().ToArray()), "gen_array_ops.reverse_v2 axis=1 fail.");
var ud2 = tf.reverse(sourceImg, new Axis(1));
Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud2.numpy().ToArray()), "tf.reverse (axis=1) fail.");
var ud = tf.image.flip_up_down(sourceImg);
Assert.IsTrue(Equal(udImg.numpy().ToArray(), ud.numpy().ToArray()), "tf.image.flip_up_down fail.");
// 左右翻转
var lr = tf.image.flip_left_right(sourceImg);
Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr.numpy().ToArray()), "tf.image.flip_left_right fail.");
var lr2 = tf.reverse(sourceImg, 0);
Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr2.numpy().ToArray()), "tf.reverse (axis=1) fail.");
var lr3 = gen_array_ops.reverse_v2(sourceImg, ops.convert_to_tensor(new[] { 0 }));
Assert.IsTrue(Equal(lrImg.numpy().ToArray(), lr3.numpy().ToArray()), "gen_array_ops.reverse_v2 axis=1 fail.");
}
}
}