using Microsoft.VisualStudio.TestTools.UnitTesting; using System; using System.Collections.Generic; using System.Text; using Tensorflow.Keras.Engine; using Tensorflow.Keras.Layers; using NumSharp; namespace TensorFlowNET.UnitTest.Keras { /// /// https://www.tensorflow.org/versions/r1.14/api_docs/python/tf/keras/layers/Embedding /// [TestClass] public class EmbeddingTest { [Ignore] [TestMethod] public void Embedding() { var model = new Sequential(); model.add(new Embedding(1000, 64, input_length: 10)); // the model will take as input an integer matrix of size (batch, // input_length). // the largest integer (i.e. word index) in the input should be no larger // than 999 (vocabulary size). // now model.output_shape == (None, 10, 64), where None is the batch // dimension. var input_array = np.random.randint(1000, size: (32, 10)); model.compile("rmsprop", "mse"); } } }