using Microsoft.VisualStudio.TestTools.UnitTesting; using Tensorflow.Keras.Losses; using Tensorflow.NumPy; using static Tensorflow.KerasApi; namespace Tensorflow.Keras.UnitTest.Layers { [TestClass] public class Huber { //https://keras.io/api/losses/regression_losses/#meansquarederror-class NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 0.0f, 0.0f } }; NDArray y_pred_float = new float[,] { { 0.6f, 0.4f }, { 0.4f, 0.6f } }; [TestMethod] public void _Default() { //>>> # Using 'auto'/'sum_over_batch_size' reduction type. //>>> h = tf.keras.losses.Huber() //>>> h(y_true, y_pred).numpy() //0.155 var loss = keras.losses.Huber(); var call = loss.Call(y_true_float, y_pred_float); Assert.AreEqual((NDArray)0.155f, call.numpy()); } [TestMethod] public void _Sample_Weight() { //>>> # Calling with 'sample_weight'. //>>> h(y_true, y_pred, sample_weight =[1, 0]).numpy() //0.09 var loss = keras.losses.Huber(); var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.1f, 0.0f }); Assert.AreEqual((NDArray)0.009000001f, call.numpy()); } [TestMethod] public void _SUM() { //>>> # Using 'sum' reduction type. //>>> h = tf.keras.losses.Huber( //... reduction = tf.keras.losses.Reduction.SUM) //>>> h(y_true, y_pred).numpy() //0.31 var loss = keras.losses.Huber(reduction: ReductionV2.SUM); var call = loss.Call(y_true_float, y_pred_float); Assert.AreEqual((NDArray)0.31f, call.numpy()); } [TestMethod] public void _None() { //>>> # Using 'none' reduction type. //>>> h = tf.keras.losses.Huber( //... reduction = tf.keras.losses.Reduction.NONE) //>>> h(y_true, y_pred).numpy() //array([0.18, 0.13], dtype = float32) var loss = keras.losses.Huber(reduction: ReductionV2.NONE); var call = loss.Call(y_true_float, y_pred_float); Assert.AreEqual((NDArray)new float[] { 0.18f, 0.13000001f }, call.numpy()); } } }