using System; using System.Collections.Generic; using System.Text; using Tensorflow; using NumSharp.Core; using System.Linq; namespace TensorFlowNET.Examples { /// /// https://github.com/nicolov/naive_bayes_tensorflow /// public class NaiveBayesClassifier : Python, IExample { public Normal dist { get; set; } public void Run() { np.array(1.0f, 1.0f); var X = np.array(new float[][] { new float[] { 1.0f, 1.0f }, new float[] { 2.0f, 2.0f }, new float[] { -1.0f, -1.0f }, new float[] { -2.0f, -2.0f }, new float[] { 1.0f, -1.0f }, new float[] { 2.0f, -2.0f }, }); var y = np.array(0,0,1,1,2,2); fit(X, y); // Create a regular grid and classify each point } public void fit(NDArray X, NDArray y) { NDArray unique_y = y.unique(); Dictionary>> dic = new Dictionary>>(); // Init uy in dic foreach (int uy in unique_y.Data()) { dic.Add(uy, new List>()); } // Separate training points by class // Shape : nb_classes * nb_samples * nb_features int maxCount = 0; for (int i = 0; i < y.size; i++) { long curClass = (long)y[i]; List> l = dic[curClass]; List pair = new List(); pair.Add((float)X[i,0]); pair.Add((float)X[i, 1]); l.Add(pair); if (l.Count > maxCount) { maxCount = l.Count; } dic[curClass] = l; } float[,,] points = new float[dic.Count, maxCount, X.shape[1]]; foreach (KeyValuePair>> kv in dic) { int j = (int) kv.Key; for (int i = 0; i < maxCount; i++) { for (int k = 0; k < X.shape[1]; k++) { points[j, i, k] = kv.Value[i][k]; } } } NDArray points_by_class = np.array(points); // estimate mean and variance for each class / feature // shape : nb_classes * nb_features var cons = tf.constant(points_by_class); var tup = tf.nn.moments(cons, new int[]{1}); var mean = tup.Item1; var variance = tup.Item2; // Create a 3x2 univariate normal distribution with the // Known mean and variance var dist = tf.distributions.Normal(mean, tf.sqrt(variance)); this.dist = dist; } public Tensor predict (NDArray X) { if (dist == null) { throw new ArgumentNullException("cant not find the model (normal distribution)!"); } int nb_classes = (int) dist.scale().shape[0]; int nb_features = (int)dist.scale().shape[1]; // Conditional probabilities log P(x|c) with shape // (nb_samples, nb_classes) Tensor tile = tf.tile(new Tensor(X), new Tensor(new int[] { -1, nb_classes, nb_features })); Tensor r = tf.reshape(tile, new Tensor(new int[] { -1, nb_classes, nb_features })); var cond_probs = tf.reduce_sum(dist.log_prob(r)); // uniform priors var priors = np.log(np.array((1.0 / nb_classes) * nb_classes)); // posterior log probability, log P(c) + log P(x|c) var joint_likelihood = tf.add(new Tensor(priors), cond_probs); // normalize to get (log)-probabilities var norm_factor = tf.reduce_logsumexp(joint_likelihood, new int[] { 1 }, true); var log_prob = joint_likelihood - norm_factor; // exp to get the actual probabilities return tf.exp(log_prob); } public void PrepareData() { } } }