using Microsoft.VisualStudio.TestTools.UnitTesting; using Tensorflow.NumPy; using System; using System.Collections.Generic; using System.Linq; using Tensorflow; using static Tensorflow.Binding; using Tensorflow.Keras.UnitTest; namespace TensorFlowNET.UnitTest.Basics { [TestClass] public class ComplexTest : EagerModeTestBase { // Tests for Complex128 [TestMethod] public void complex128_basic() { double[] d_real = new double[] { 1.0, 2.0, 3.0, 4.0 }; double[] d_imag = new double[] { -1.0, -3.0, 5.0, 7.0 }; Tensor t_real = tf.constant(d_real, dtype:TF_DataType.TF_DOUBLE); Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_DOUBLE); Tensor t_complex = tf.complex(t_real, t_imag); Tensor t_real_result = tf.math.real(t_complex); Tensor t_imag_result = tf.math.imag(t_complex); NDArray n_real_result = t_real_result.numpy(); NDArray n_imag_result = t_imag_result.numpy(); double[] d_real_result =n_real_result.ToArray(); double[] d_imag_result = n_imag_result.ToArray(); Assert.IsTrue(base.Equal(d_real_result, d_real)); Assert.IsTrue(base.Equal(d_imag_result, d_imag)); } [TestMethod] public void complex128_abs() { tf.enable_eager_execution(); double[] d_real = new double[] { -3.0, -5.0, 8.0, 7.0 }; double[] d_imag = new double[] { -4.0, 12.0, -15.0, 24.0 }; double[] d_abs = new double[] { 5.0, 13.0, 17.0, 25.0 }; Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_DOUBLE); Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_DOUBLE); Tensor t_complex = tf.complex(t_real, t_imag); Tensor t_abs_result = tf.abs(t_complex); double[] d_abs_result = t_abs_result.numpy().ToArray(); Assert.IsTrue(base.Equal(d_abs_result, d_abs)); } [TestMethod] public void complex128_conj() { double[] d_real = new double[] { -3.0, -5.0, 8.0, 7.0 }; double[] d_imag = new double[] { -4.0, 12.0, -15.0, 24.0 }; double[] d_real_expected = new double[] { -3.0, -5.0, 8.0, 7.0 }; double[] d_imag_expected = new double[] { 4.0, -12.0, 15.0, -24.0 }; Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_DOUBLE); Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_DOUBLE); Tensor t_complex = tf.complex(t_real, t_imag, TF_DataType.TF_COMPLEX128); Tensor t_result = tf.math.conj(t_complex); NDArray n_real_result = tf.math.real(t_result).numpy(); NDArray n_imag_result = tf.math.imag(t_result).numpy(); double[] d_real_result = n_real_result.ToArray(); double[] d_imag_result = n_imag_result.ToArray(); Assert.IsTrue(base.Equal(d_real_result, d_real_expected)); Assert.IsTrue(base.Equal(d_imag_result, d_imag_expected)); } [TestMethod] public void complex128_angle() { double[] d_real = new double[] { 0.0, 1.0, -1.0, 0.0 }; double[] d_imag = new double[] { 1.0, 0.0, -2.0, -3.0 }; double[] d_expected = new double[] { 1.5707963267948966, 0, -2.0344439357957027, -1.5707963267948966 }; Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_DOUBLE); Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_DOUBLE); Tensor t_complex = tf.complex(t_real, t_imag, TF_DataType.TF_COMPLEX128); Tensor t_result = tf.math.angle(t_complex); NDArray n_result = t_result.numpy(); double[] d_result = n_result.ToArray(); Assert.IsTrue(base.Equal(d_result, d_expected)); } // Tests for Complex64 [TestMethod] public void complex64_basic() { tf.init_scope(); float[] d_real = new float[] { 1.0f, 2.0f, 3.0f, 4.0f }; float[] d_imag = new float[] { -1.0f, -3.0f, 5.0f, 7.0f }; Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_FLOAT); Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_FLOAT); Tensor t_complex = tf.complex(t_real, t_imag); Tensor t_real_result = tf.math.real(t_complex); Tensor t_imag_result = tf.math.imag(t_complex); // Convert the EagerTensors to NumPy arrays directly float[] d_real_result = t_real_result.numpy().ToArray(); float[] d_imag_result = t_imag_result.numpy().ToArray(); Assert.IsTrue(base.Equal(d_real_result, d_real)); Assert.IsTrue(base.Equal(d_imag_result, d_imag)); } [TestMethod] public void complex64_abs() { tf.enable_eager_execution(); float[] d_real = new float[] { -3.0f, -5.0f, 8.0f, 7.0f }; float[] d_imag = new float[] { -4.0f, 12.0f, -15.0f, 24.0f }; float[] d_abs = new float[] { 5.0f, 13.0f, 17.0f, 25.0f }; Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_FLOAT); Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_FLOAT); Tensor t_complex = tf.complex(t_real, t_imag, TF_DataType.TF_COMPLEX64); Tensor t_abs_result = tf.abs(t_complex); NDArray n_abs_result = t_abs_result.numpy(); float[] d_abs_result = n_abs_result.ToArray(); Assert.IsTrue(base.Equal(d_abs_result, d_abs)); } [TestMethod] public void complex64_conj() { float[] d_real = new float[] { -3.0f, -5.0f, 8.0f, 7.0f }; float[] d_imag = new float[] { -4.0f, 12.0f, -15.0f, 24.0f }; float[] d_real_expected = new float[] { -3.0f, -5.0f, 8.0f, 7.0f }; float[] d_imag_expected = new float[] { 4.0f, -12.0f, 15.0f, -24.0f }; Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_FLOAT); Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_FLOAT); Tensor t_complex = tf.complex(t_real, t_imag, TF_DataType.TF_COMPLEX64); Tensor t_result = tf.math.conj(t_complex); NDArray n_real_result = tf.math.real(t_result).numpy(); NDArray n_imag_result = tf.math.imag(t_result).numpy(); float[] d_real_result = n_real_result.ToArray(); float[] d_imag_result = n_imag_result.ToArray(); Assert.IsTrue(base.Equal(d_real_result, d_real_expected)); Assert.IsTrue(base.Equal(d_imag_result, d_imag_expected)); } [TestMethod] public void complex64_angle() { float[] d_real = new float[] { 0.0f, 1.0f, -1.0f, 0.0f }; float[] d_imag = new float[] { 1.0f, 0.0f, -2.0f, -3.0f }; float[] d_expected = new float[] { 1.5707964f, 0f, -2.0344439f, -1.5707964f }; Tensor t_real = tf.constant(d_real, dtype: TF_DataType.TF_FLOAT); Tensor t_imag = tf.constant(d_imag, dtype: TF_DataType.TF_FLOAT); Tensor t_complex = tf.complex(t_real, t_imag, TF_DataType.TF_COMPLEX64); Tensor t_result = tf.math.angle(t_complex); NDArray n_result = t_result.numpy(); float[] d_result = n_result.ToArray(); Assert.IsTrue(base.Equal(d_result, d_expected)); } } }