using Microsoft.VisualStudio.TestTools.UnitTesting; using Tensorflow.Keras.Losses; using Tensorflow.NumPy; using static Tensorflow.KerasApi; namespace Tensorflow.Keras.UnitTest.Layers { [TestClass] public class MeanAbsoluteError { //https://keras.io/api/losses/regression_losses/ NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 0.0f, 0.0f } }; NDArray y_pred_float = new float[,] { { 1.0f, 1.0f }, { 1.0f, 0.0f } }; [TestMethod] public void _Default() { //>>> # Using 'auto'/'sum_over_batch_size' reduction type. //>>> mae = tf.keras.losses.MeanAbsoluteError() //>>> mae(y_true, y_pred).numpy() //0.5 var loss = keras.losses.MeanAbsoluteError(); var call = loss.Call(y_true_float, y_pred_float); Assert.AreEqual((NDArray)(0.5f), call.numpy()); } [TestMethod] public void _Sample_Weight() { //>>> # Calling with 'sample_weight'. //>>> mae(y_true, y_pred, sample_weight =[0.7, 0.3]).numpy() //0.25 var loss = keras.losses.MeanAbsoluteError(); var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.7f, 0.3f }); Assert.AreEqual((NDArray)(0.25f), call.numpy()); } [TestMethod] public void _SUM() { //>>> # Using 'sum' reduction type. //>>> mae = tf.keras.losses.MeanAbsoluteError( //... reduction = tf.keras.losses.Reduction.SUM) //>>> mae(y_true, y_pred).numpy() //1.0 var loss = keras.losses.MeanAbsoluteError(reduction: ReductionV2.SUM); var call = loss.Call(y_true_float, y_pred_float); Assert.AreEqual((NDArray)(1.0f), call.numpy()); } [TestMethod] public void _None() { //>>> # Using 'none' reduction type. //>>> mae = tf.keras.losses.MeanAbsoluteError( //... reduction = tf.keras.losses.Reduction.NONE) //>>> mae(y_true, y_pred).numpy() //array([0.5, 0.5], dtype = float32) var loss = keras.losses.MeanAbsoluteError(reduction: ReductionV2.NONE); var call = loss.Call(y_true_float, y_pred_float); Assert.AreEqual((NDArray)new float[] { 0.5f, 0.5f }, call.numpy()); } } }