using NumSharp.Core; using System; using System.Collections.Generic; using System.Text; using Tensorflow; namespace TensorFlowNET.Examples.Utility { public class DataSet { private int _num_examples; public int num_examples => _num_examples; private int _epochs_completed; public int epochs_completed => _epochs_completed; private int _index_in_epoch; public int index_in_epoch => _index_in_epoch; private NDArray _images; public NDArray images => _images; private NDArray _labels; public NDArray labels => _labels; public DataSet(NDArray images, NDArray labels, TF_DataType dtype, bool reshape) { _num_examples = images.shape[0]; images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]); images.astype(dtype.as_numpy_datatype()); images = np.multiply(images, 1.0f / 255.0f); _images = images; _labels = labels; _epochs_completed = 0; _index_in_epoch = 0; } public (int, int) next_batch(int batch_size, bool fake_data = false, bool shuffle = true) { var start = _index_in_epoch; // Shuffle for the first epoch if(_epochs_completed == 0 && start == 0 && shuffle) { var perm0 = np.arange(_num_examples); np.random.shuffle(perm0); _images = images[perm0]; _labels = labels[perm0]; } // Go to the next epoch if (start + batch_size > _num_examples) { // Finished epoch _epochs_completed += 1; throw new NotImplementedException("next_batch"); } else { _index_in_epoch += batch_size; var end = _index_in_epoch; return (_images[np.arange(start, end)], _labels[np.arange(start, end)]); } } } }