using Google.Protobuf; using System; using System.Collections.Generic; using System.IO; using System.Text; using Tensorflow.Keras.Engine; using Tensorflow.Train; using ThirdParty.Tensorflow.Python.Keras.Protobuf; using static Tensorflow.Binding; using static Tensorflow.KerasApi; namespace Tensorflow.Keras.Saving.SavedModel { public class KerasLoadModelUtils { /// /// Corresponding to keras/saving/save.py/load_model /// /// /// /// /// /// public static Trackable load_model(string filepath, IDictionary? custom_objects = null, bool compile = true, LoadOptions? options = null) { using (SharedObjectSavingScope.Enter()) { using (LoadContext.load_context(options)) { if (!File.Exists(filepath) && !Directory.Exists(filepath)) { throw new IOException($"No file or directory found at {filepath}."); } if (Directory.Exists(filepath)) { return load(filepath, compile, options); } else { throw new NotImplementedException("Model load of h5 format has not been supported. Please submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues if it's needed."); } } } } private static Trackable load(string path, bool compile = true, LoadOptions? options = null) { SavedMetadata metadata = new SavedMetadata(); var meta_graph_def = Loader.parse_saved_model(path).MetaGraphs[0]; var object_graph_def = meta_graph_def.ObjectGraphDef; string path_to_metadata_pb = Path.Combine(path, Constants.SAVED_METADATA_PATH); if (File.Exists(path_to_metadata_pb)) { metadata.MergeFrom(new FileStream(path_to_metadata_pb, FileMode.Open, FileAccess.Read)); } else { throw new NotImplementedException("SavedModel saved prior to TF 2.5 detected when loading Keras model, please" + " use higher version or submit an issue to https://github.com/SciSharp/TensorFlow.NET/issues. to let us know you need it."); } if (metadata.Nodes is null || metadata.Nodes.Count == 0) { return Loader.load(path, options: options) as Model; } var keras_loader = new KerasObjectLoader(metadata, object_graph_def); keras_loader.load_layers(compile: compile); Dictionary)> nodes_to_load = new(); nodes_to_load["root"] = (null, null); foreach(var item in keras_loader.LoadedNodes) { nodes_to_load[keras_loader.get_path(item.Key)] = item.Value; } var loaded = Loader.load_partial(path, nodes_to_load, options); keras_loader.finalize_objects(); // keras_loader.del_tracking(); var model = loaded["root"]; if(model is Model && compile) { // TODO(Rinne): implement it. } if (!tf.Context.executing_eagerly()) { // TODO(Rinne): implement it. } return model; } } }