using System;
using System.Collections.Generic;
using System.Text;
using NumSharp;
using Tensorflow;
using TensorFlowNET.Examples.Utility;
namespace TensorFlowNET.Examples
{
///
/// Simple vanilla neural net solving the famous XOR problem
/// https://github.com/amygdala/tensorflow-workshop/blob/master/workshop_sections/getting_started/xor/README.md
///
public class NeuralNetXor : Python, IExample
{
public int Priority => 10;
public bool Enabled { get; set; } = true;
public string Name => "NN XOR";
public bool ImportGraph { get; set; } = false;
public int num_steps = 10000;
private NDArray data;
private (Operation, Tensor, Tensor) make_graph(Tensor features,Tensor labels, int num_hidden = 8)
{
var stddev = 1 / Math.Sqrt(2);
var hidden_weights = tf.Variable(tf.truncated_normal(new int []{2, num_hidden}, seed:1, stddev: (float) stddev ));
// Shape [4, num_hidden]
var hidden_activations = tf.nn.relu(tf.matmul(features, hidden_weights));
var output_weights = tf.Variable(tf.truncated_normal(
new[] {num_hidden, 1},
seed: 17,
stddev: (float) (1 / Math.Sqrt(num_hidden))
));
// Shape [4, 1]
var logits = tf.matmul(hidden_activations, output_weights);
// Shape [4]
var predictions = tf.sigmoid(tf.squeeze(logits));
var loss = tf.reduce_mean(tf.square(predictions - tf.cast(labels, tf.float32)), name:"loss");
var gs = tf.Variable(0, trainable: false);
var train_op = tf.train.GradientDescentOptimizer(0.2f).minimize(loss, global_step: gs);
return (train_op, loss, gs);
}
public bool Run()
{
PrepareData();
float loss_value = 0;
if (ImportGraph)
loss_value = RunWithImportedGraph();
else
loss_value = RunWithBuiltGraph();
return loss_value < 0.0628;
}
private float RunWithImportedGraph()
{
var graph = tf.Graph().as_default();
tf.train.import_meta_graph("graph/xor.meta");
Tensor features = graph.get_operation_by_name("Placeholder");
Tensor labels = graph.get_operation_by_name("Placeholder_1");
Tensor loss = graph.get_operation_by_name("loss");
Tensor train_op = graph.get_operation_by_name("train_op");
Tensor global_step = graph.get_operation_by_name("global_step");
var init = tf.global_variables_initializer();
float loss_value = 0;
// Start tf session
with(tf.Session(graph), sess =>
{
sess.run(init);
var step = 0;
var y_ = np.array(new int[] { 1, 0, 0, 1 }, dtype: np.int32);
while (step < num_steps)
{
// original python:
//_, step, loss_value = sess.run(
// [train_op, gs, loss],
// feed_dict={features: xy, labels: y_}
// )
var result = sess.run(new ITensorOrOperation[] { train_op, global_step, loss }, new FeedItem(features, data), new FeedItem(labels, y_));
loss_value = result[2];
step++;
if (step % 1000 == 0)
Console.WriteLine($"Step {step} loss: {loss_value}");
}
Console.WriteLine($"Final loss: {loss_value}");
});
return loss_value;
}
private float RunWithBuiltGraph()
{
var graph = tf.Graph().as_default();
var features = tf.placeholder(tf.float32, new TensorShape(4, 2));
var labels = tf.placeholder(tf.int32, new TensorShape(4));
var (train_op, loss, gs) = make_graph(features, labels);
var init = tf.global_variables_initializer();
float loss_value = 0;
// Start tf session
with(tf.Session(graph), sess =>
{
sess.run(init);
var step = 0;
var y_ = np.array(new int[] { 1, 0, 0, 1 }, dtype: np.int32);
while (step < num_steps)
{
var result = sess.run(new ITensorOrOperation[] { train_op, gs, loss }, new FeedItem(features, data), new FeedItem(labels, y_));
loss_value = result[2];
//step = result[1];
step++;
if (step % 1000 == 0)
Console.WriteLine($"Step {step} loss: {loss_value}");
}
Console.WriteLine($"Final loss: {loss_value}");
});
return loss_value;
}
public void PrepareData()
{
data = new float[,]
{
{1, 0 },
{1, 1 },
{0, 0 },
{0, 1 }
};
if (ImportGraph)
{
// download graph meta data
string url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/xor.meta";
Web.Download(url, "graph", "xor.meta");
}
}
}
}