using NumSharp; using System; using System.Collections.Generic; using System.Diagnostics; using System.IO; using Console = Colorful.Console; using Tensorflow; using System.Drawing; using static Tensorflow.Binding; namespace TensorFlowNET.Examples { /// /// Inception v3 is a widely-used image recognition model /// that has been shown to attain greater than 78.1% accuracy on the ImageNet dataset. /// The model is the culmination of many ideas developed by multiple researchers over the years. /// public class ImageRecognitionInception : IExample { public bool Enabled { get; set; } = true; public string Name => "Image Recognition Inception"; public bool IsImportingGraph { get; set; } = false; string dir = "ImageRecognitionInception"; string pbFile = "tensorflow_inception_graph.pb"; string labelFile = "imagenet_comp_graph_label_strings.txt"; List file_ndarrays = new List(); public bool Run() { PrepareData(); var graph = new Graph(); //import GraphDef from pb file graph.Import(Path.Join(dir, pbFile)); var input_name = "input"; var output_name = "output"; var input_operation = graph.OperationByName(input_name); var output_operation = graph.OperationByName(output_name); var labels = File.ReadAllLines(Path.Join(dir, labelFile)); var result_labels = new List(); var sw = new Stopwatch(); using (var sess = tf.Session(graph)) { foreach (var nd in file_ndarrays) { sw.Restart(); var results = sess.run(output_operation.outputs[0], (input_operation.outputs[0], nd)); results = np.squeeze(results); int idx = np.argmax(results); Console.WriteLine($"{labels[idx]} {results[idx]} in {sw.ElapsedMilliseconds}ms", Color.Tan); result_labels.Add(labels[idx]); } } return result_labels.Contains("military uniform"); } private NDArray ReadTensorFromImageFile(string file_name, int input_height = 224, int input_width = 224, int input_mean = 117, int input_std = 1) { var graph = tf.Graph().as_default(); var file_reader = tf.read_file(file_name, "file_reader"); var decodeJpeg = tf.image.decode_jpeg(file_reader, channels: 3, name: "DecodeJpeg"); var cast = tf.cast(decodeJpeg, tf.float32); var dims_expander = tf.expand_dims(cast, 0); var resize = tf.constant(new int[] { input_height, input_width }); var bilinear = tf.image.resize_bilinear(dims_expander, resize); var sub = tf.subtract(bilinear, new float[] { input_mean }); var normalized = tf.divide(sub, new float[] { input_std }); using (var sess = tf.Session(graph)) return sess.run(normalized); } public void PrepareData() { Directory.CreateDirectory(dir); // get model file string url = "https://storage.googleapis.com/download.tf.org/models/inception5h.zip"; Utility.Web.Download(url, dir, "inception5h.zip"); Utility.Compress.UnZip(Path.Join(dir, "inception5h.zip"), dir); // download sample picture Directory.CreateDirectory(Path.Join(dir, "img")); url = $"https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/label_image/data/grace_hopper.jpg"; Utility.Web.Download(url, Path.Join(dir, "img"), "grace_hopper.jpg"); url = $"https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/data/shasta-daisy.jpg"; Utility.Web.Download(url, Path.Join(dir, "img"), "shasta-daisy.jpg"); // load image file var files = Directory.GetFiles(Path.Join(dir, "img")); for (int i = 0; i < files.Length; i++) { var nd = ReadTensorFromImageFile(files[i]); file_ndarrays.Add(nd); } } public Graph ImportGraph() { throw new NotImplementedException(); } public Graph BuildGraph() { throw new NotImplementedException(); } public void Train(Session sess) { throw new NotImplementedException(); } public void Predict(Session sess) { throw new NotImplementedException(); } public void Test(Session sess) { throw new NotImplementedException(); } } }