using Microsoft.VisualStudio.TestTools.UnitTesting; using Tensorflow.NumPy; using Tensorflow; using static Tensorflow.Binding; using System.Linq; namespace TensorFlowNET.UnitTest.ManagedAPI { [TestClass] public class ArrayOpsTest : EagerModeTestBase { /// /// https://www.tensorflow.org/api_docs/python/tf/slice /// [TestMethod] public void Slice() { // Tests based on example code in TF documentation var input_array = tf.constant(np.array(new int[] { 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6 }).reshape((3, 2, 3))); var indices = tf.constant(np.array(new int[] { 0, 2 })); var r1 = array_ops.slice(input_array, ops.convert_n_to_tensor(new object[] { 1, 0, 0 }), ops.convert_n_to_tensor(new object[] { 1, 1, 3 })); Assert.AreEqual(new Shape(1, 1, 3), r1.shape); var r1np = r1.numpy(); Assert.AreEqual(r1np[0, 0, 0], 3); Assert.AreEqual(r1np[0, 0, 1], 3); Assert.AreEqual(r1np[0, 0, 2], 3); var r2 = array_ops.slice(input_array, ops.convert_n_to_tensor(new object[] { 1, 0, 0 }), ops.convert_n_to_tensor(new object[] { 1, 2, 3 })); Assert.AreEqual(new Shape(1, 2, 3), r2.shape); var r2np = r2.numpy(); Assert.AreEqual(r2np[0, 0, 0], 3); Assert.AreEqual(r2np[0, 0, 1], 3); Assert.AreEqual(r2np[0, 0, 2], 3); Assert.AreEqual(r2np[0, 1, 0], 4); Assert.AreEqual(r2np[0, 1, 1], 4); Assert.AreEqual(r2np[0, 1, 2], 4); var r3 = array_ops.slice(input_array, ops.convert_n_to_tensor(new object[] { 1, 0, 0 }), ops.convert_n_to_tensor(new object[] { 2, 1, 3 })); Assert.AreEqual(new Shape(2, 1, 3), r3.shape); var r3np = r3.numpy(); Assert.AreEqual(r3np[0, 0, 0], 3); Assert.AreEqual(r3np[0, 0, 1], 3); Assert.AreEqual(r3np[0, 0, 2], 3); Assert.AreEqual(r3np[1, 0, 0], 5); Assert.AreEqual(r3np[1, 0, 1], 5); Assert.AreEqual(r3np[1, 0, 2], 5); } /// /// https://www.tensorflow.org/api_docs/python/tf/gather /// [TestMethod] public void Gather() { var input_array = tf.constant(np.arange(12).reshape((3, 4)).astype(np.float32)); var indices = tf.constant(np.array(new int[] { 0, 2 })); var result = array_ops.gather(input_array, indices); Assert.AreEqual(new Shape(2, 4), result.shape); Assert.AreEqual(result.numpy()[0, 0], 0.0f); Assert.AreEqual(result.numpy()[0, 1], 1.0f); Assert.AreEqual(result.numpy()[1, 3], 11.0f); // Tests based on example code in Python doc string for tf.gather() var p1 = tf.random.normal(new Shape(5, 6, 7, 8)); var i1 = tf.random_uniform(new Shape(10, 11), maxval: 7, dtype: tf.int32); var r1 = tf.gather(p1, i1, axis: 2); Assert.AreEqual(new Shape(5, 6, 10, 11, 8), r1.shape); var p2 = tf.random.normal(new Shape(4, 3)); var i2 = tf.constant(new int[,] { { 0, 2 } }); var r2 = tf.gather(p2, i2, axis: 0); Assert.AreEqual(new Shape(1, 2, 3), r2.shape); var r3 = tf.gather(p2, i2, axis: 1); Assert.AreEqual(new Shape(4, 1, 2), r3.shape); } /// /// https://www.tensorflow.org/api_docs/python/tf/TensorArray /// [TestMethod] public void TensorArray() { var ta = tf.TensorArray(tf.float32, size: 0, dynamic_size: true, clear_after_read: false); ta.write(0, 10); ta.write(1, 20); ta.write(2, 30); Assert.AreEqual(ta.read(0).numpy(), 10f); Assert.AreEqual(ta.read(1).numpy(), 20f); Assert.AreEqual(ta.read(2).numpy(), 30f); } /// /// /// [TestMethod] public void Reverse() { /* * python run get test data code: import tensorflow as tf data=[[1, 2, 3], [4, 5, 6], [7,8,9]] data2 = tf.constant(data) print('test data shaper:', data2.shape) print('test data:', data2) axis = [-2,-1,0,1] for i in axis: print('') print('axis:', i) ax = tf.constant([i]) datar = tf.reverse(data2, ax) datar2 = array_ops.reverse(data2, ax) print(datar) print(datar2) * */ var inputData = np.array(new int[,] { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }); var expectedOutput = new[] { // np.array(new int[,] { { 7, 8, 9 }, { 4, 5, 6 }, { 1, 2, 3 } }), np.array(new int[,] { { 3, 2, 1 }, { 6, 5, 4 }, { 9, 8, 7 } }), np.array(new int[,] { { 7, 8, 9 }, { 4, 5, 6 }, { 1, 2, 3 } }), np.array(new int[,] { { 3, 2, 1 }, { 6, 5, 4 }, { 9, 8, 7 } }) }; var axes = new int [] { -1, 0, 1 }; for (var i = 0; i < axes.Length; i++) { var axis = axes[i]; var expected = tf.constant(expectedOutput[i]).numpy(); var inputTensor = tf.constant(inputData); var axisTrensor = tf.constant(new[] { axis }); var outputTensor = tf.reverse_v2(inputTensor, axisTrensor); var npout = outputTensor.numpy(); Assert.IsTrue(Enumerable.SequenceEqual(npout, expected), $"axis:{axis}"); var outputTensor2 = tf.reverse_v2(inputTensor, new[] { axis } ); var npout2 = outputTensor2.numpy(); Assert.IsTrue(Enumerable.SequenceEqual(npout2, expected), $"axis:{axis}"); } } } } using Microsoft.VisualStudio.TestTools.UnitTesting; using Tensorflow.NumPy; using Tensorflow; using static Tensorflow.Binding; using System.Linq; namespace TensorFlowNET.UnitTest.ManagedAPI { [TestClass] public class ArrayOpsTest : EagerModeTestBase { /// /// https://www.tensorflow.org/api_docs/python/tf/slice /// [TestMethod] public void Slice() { // Tests based on example code in TF documentation var input_array = tf.constant(np.array(new int[] { 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6 }).reshape((3,2,3))); var indices = tf.constant(np.array(new int[] { 0, 2 })); var r1 = array_ops.slice(input_array, ops.convert_n_to_tensor(new object[] { 1, 0, 0 }), ops.convert_n_to_tensor(new object[] { 1, 1, 3 })); Assert.AreEqual(new Shape(1,1,3), r1.shape); var r1np = r1.numpy(); Assert.AreEqual(r1np[0, 0, 0], 3); Assert.AreEqual(r1np[0, 0, 1], 3); Assert.AreEqual(r1np[0, 0, 2], 3); var r2 = array_ops.slice(input_array, ops.convert_n_to_tensor(new object[] { 1, 0, 0 }), ops.convert_n_to_tensor(new object[] { 1, 2, 3 })); Assert.AreEqual(new Shape(1, 2, 3), r2.shape); var r2np = r2.numpy(); Assert.AreEqual(r2np[0, 0, 0], 3); Assert.AreEqual(r2np[0, 0, 1], 3); Assert.AreEqual(r2np[0, 0, 2], 3); Assert.AreEqual(r2np[0, 1, 0], 4); Assert.AreEqual(r2np[0, 1, 1], 4); Assert.AreEqual(r2np[0, 1, 2], 4); var r3 = array_ops.slice(input_array, ops.convert_n_to_tensor(new object[] { 1, 0, 0 }), ops.convert_n_to_tensor(new object[] { 2, 1, 3 })); Assert.AreEqual(new Shape(2, 1, 3), r3.shape); var r3np = r3.numpy(); Assert.AreEqual(r3np[0, 0, 0], 3); Assert.AreEqual(r3np[0, 0, 1], 3); Assert.AreEqual(r3np[0, 0, 2], 3); Assert.AreEqual(r3np[1, 0, 0], 5); Assert.AreEqual(r3np[1, 0, 1], 5); Assert.AreEqual(r3np[1, 0, 2], 5); } /// /// https://www.tensorflow.org/api_docs/python/tf/gather /// [TestMethod] public void Gather() { var input_array = tf.constant(np.arange(12).reshape((3, 4)).astype(np.float32)); var indices = tf.constant(np.array(new int[] { 0, 2 })); var result = array_ops.gather(input_array, indices); Assert.AreEqual(new Shape(2, 4), result.shape); Assert.AreEqual(result.numpy()[0, 0], 0.0f); Assert.AreEqual(result.numpy()[0, 1], 1.0f); Assert.AreEqual(result.numpy()[1, 3], 11.0f); // Tests based on example code in Python doc string for tf.gather() var p1 = tf.random.normal(new Shape(5, 6, 7, 8)); var i1 = tf.random_uniform(new Shape(10, 11), maxval: 7, dtype: tf.int32); var r1 = tf.gather(p1, i1, axis:2); Assert.AreEqual(new Shape(5, 6, 10, 11, 8), r1.shape); var p2 = tf.random.normal(new Shape(4,3)); var i2 = tf.constant(new int[,] { { 0, 2} }); var r2 = tf.gather(p2, i2, axis: 0); Assert.AreEqual(new Shape(1, 2, 3), r2.shape); var r3 = tf.gather(p2, i2, axis: 1); Assert.AreEqual(new Shape(4,1,2), r3.shape); } /// /// https://www.tensorflow.org/api_docs/python/tf/TensorArray /// [TestMethod] public void TensorArray() { var ta = tf.TensorArray(tf.float32, size: 0, dynamic_size: true, clear_after_read: false); ta.write(0, 10); ta.write(1, 20); ta.write(2, 30); Assert.AreEqual(ta.read(0).numpy(), 10f); Assert.AreEqual(ta.read(1).numpy(), 20f); Assert.AreEqual(ta.read(2).numpy(), 30f); } /// /// https://www.tensorflow.org/api_docs/python/tf/reverse /// [TestMethod] public void ReverseArray() { var a = tf.random.normal((2, 3)); var b = tf.reverse(a, -1); Assert.IsTrue(Equal(a[0].ToArray().Reverse().ToArray(), b[0].ToArray())); Assert.IsTrue(Equal(a[1].ToArray().Reverse().ToArray(), b[1].ToArray())); } } }