/*****************************************************************************
Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
******************************************************************************/
using NumSharp;
using System;
using System.Collections.Generic;
using System.Text;
using Tensorflow;
using static Tensorflow.Python;
namespace TensorFlowNET.Examples
{
///
/// A linear regression learning algorithm example using TensorFlow library.
/// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py
///
public class LinearRegression : IExample
{
public bool Enabled { get; set; } = true;
public string Name => "Linear Regression";
public bool IsImportingGraph { get; set; } = false;
public int training_epochs = 1000;
// Parameters
float learning_rate = 0.01f;
int display_step = 50;
NumPyRandom rng = np.random;
NDArray train_X, train_Y;
int n_samples;
public bool Run()
{
// Training Data
PrepareData();
// tf Graph Input
var X = tf.placeholder(tf.float32);
var Y = tf.placeholder(tf.float32);
// Set model weights
// We can set a fixed init value in order to debug
// var rnd1 = rng.randn();
// var rnd2 = rng.randn();
var W = tf.Variable(-0.06f, name: "weight");
var b = tf.Variable(-0.73f, name: "bias");
// Construct a linear model
var pred = tf.add(tf.multiply(X, W), b);
// Mean squared error
var cost = tf.reduce_sum(tf.pow(pred - Y, 2.0f)) / (2.0f * n_samples);
// Gradient descent
// Note, minimize() knows to modify W and b because Variable objects are trainable=True by default
var optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost);
// Initialize the variables (i.e. assign their default value)
var init = tf.global_variables_initializer();
// Start training
return with(tf.Session(), sess =>
{
// Run the initializer
sess.run(init);
// Fit all training data
for (int epoch = 0; epoch < training_epochs; epoch++)
{
foreach (var (x, y) in zip(train_X, train_Y))
{
sess.run(optimizer,
new FeedItem(X, x),
new FeedItem(Y, y));
}
// Display logs per epoch step
if ((epoch + 1) % display_step == 0)
{
var c = sess.run(cost,
new FeedItem(X, train_X),
new FeedItem(Y, train_Y));
Console.WriteLine($"Epoch: {epoch + 1} cost={c} " + $"W={sess.run(W)} b={sess.run(b)}");
}
}
Console.WriteLine("Optimization Finished!");
var training_cost = sess.run(cost,
new FeedItem(X, train_X),
new FeedItem(Y, train_Y));
Console.WriteLine($"Training cost={training_cost} W={sess.run(W)} b={sess.run(b)}");
// Testing example
var test_X = np.array(6.83f, 4.668f, 8.9f, 7.91f, 5.7f, 8.7f, 3.1f, 2.1f);
var test_Y = np.array(1.84f, 2.273f, 3.2f, 2.831f, 2.92f, 3.24f, 1.35f, 1.03f);
Console.WriteLine("Testing... (Mean square loss Comparison)");
var testing_cost = sess.run(tf.reduce_sum(tf.pow(pred - Y, 2.0f)) / (2.0f * test_X.shape[0]),
new FeedItem(X, test_X),
new FeedItem(Y, test_Y));
Console.WriteLine($"Testing cost={testing_cost}");
var diff = Math.Abs((float)training_cost - (float)testing_cost);
Console.WriteLine($"Absolute mean square loss difference: {diff}");
return diff < 0.01;
});
}
public void PrepareData()
{
train_X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f,
7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f);
train_Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f,
2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f);
n_samples = train_X.shape[0];
}
public Graph ImportGraph()
{
throw new NotImplementedException();
}
public Graph BuildGraph()
{
throw new NotImplementedException();
}
public void Train(Session sess)
{
throw new NotImplementedException();
}
public void Predict(Session sess)
{
throw new NotImplementedException();
}
public void Test(Session sess)
{
throw new NotImplementedException();
}
}
}