import tensorflow as tf # hyperparameters n_neurons = 128 learning_rate = 0.001 batch_size = 128 n_epochs = 10 # parameters n_steps = 28 # 28 rows n_inputs = 28 # 28 cols n_outputs = 10 # 10 classes # build a rnn model X = tf.placeholder(tf.float32, [None, n_steps, n_inputs]) y = tf.placeholder(tf.int32, [None]) cell = tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons) output, state = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32) logits = tf.layers.dense(state, n_outputs) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits) loss = tf.reduce_mean(cross_entropy) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss) prediction = tf.nn.in_top_k(logits, y, 1) accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32)) # input data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/") X_test = mnist.test.images # X_test shape: [num_test, 28*28] X_test = X_test.reshape([-1, n_steps, n_inputs]) y_test = mnist.test.labels # initialize the variables init = tf.global_variables_initializer() # train the model with tf.Session() as sess: sess.run(init) n_batches = mnist.train.num_examples // batch_size for epoch in range(n_epochs): for batch in range(n_batches): X_train, y_train = mnist.train.next_batch(batch_size) X_train = X_train.reshape([-1, n_steps, n_inputs]) sess.run(optimizer, feed_dict={X: X_train, y: y_train}) loss_train, acc_train = sess.run( [loss, accuracy], feed_dict={X: X_train, y: y_train}) print('Epoch: {}, Train Loss: {:.3f}, Train Acc: {:.3f}'.format( epoch + 1, loss_train, acc_train)) loss_test, acc_test = sess.run( [loss, accuracy], feed_dict={X: X_test, y: y_test}) print('Test Loss: {:.3f}, Test Acc: {:.3f}'.format(loss_test, acc_test))