using System;
using System.Collections.Generic;
using System.Text;
using Tensorflow;
using NumSharp.Core;
using System.Linq;
namespace TensorFlowNET.Examples
{
///
/// https://github.com/nicolov/naive_bayes_tensorflow
///
public class NaiveBayesClassifier : Python, IExample
{
public void Run()
{
// t/f.nn.moments()
}
public void fit(NDArray X, NDArray y)
{
NDArray unique_y = y.unique();
Dictionary> dic = new Dictionary>();
// Init uy in dic
foreach (int uy in unique_y.Data())
{
dic.Add(uy, new List());
}
// Separate training points by class
// Shape : nb_classes * nb_samples * nb_features
int maxCount = 0;
foreach (var (x, t) in zip(X.Data(), y.Data()))
{
int curClass = (y[t, 0] as NDArray).Data().First();
List l = dic[curClass];
l.Add(x);
if (l.Count > maxCount)
{
maxCount = l.Count;
}
dic.Add(curClass, l);
}
NDArray points_by_class = np.zeros(dic.Count,maxCount,X.shape[1]);
foreach (KeyValuePair> kv in dic)
{
var cls = kv.Value.ToArray();
for (int i = 0; i < dic.Count; i++)
{
points_by_class[i] = dic[i];
}
}
// estimate mean and variance for each class / feature
// shape : nb_classes * nb_features
var cons = tf.constant(points_by_class);
Tuple tup = tf.nn.moments(cons, new int[]{1});
var mean = tup.Item1;
var variance = tup.Item2;
// Create a 3x2 univariate normal distribution with the
// Known mean and variance
// var dist = tf.distributions.Normal(loc=mean, scale=tf.sqrt(variance));
}
public void predict (NDArray X)
{
// assert self.dist is not None
// nb_classes, nb_features = map(int, self.dist.scale.shape)
throw new NotFiniteNumberException();
}
}
}