using System; using System.Collections.Generic; using System.Text; using Tensorflow; using NumSharp.Core; using System.Linq; namespace TensorFlowNET.Examples { /// /// https://github.com/nicolov/naive_bayes_tensorflow /// public class NaiveBayesClassifier : Python, IExample { public void Run() { // t/f.nn.moments() } public void fit(NDArray X, NDArray y) { NDArray unique_y = y.unique(); Dictionary> dic = new Dictionary>(); // Init uy in dic foreach (int uy in unique_y.Data()) { dic.Add(uy, new List()); } // Separate training points by class // Shape : nb_classes * nb_samples * nb_features int maxCount = 0; foreach (var (x, t) in zip(X.Data(), y.Data())) { int curClass = (y[t, 0] as NDArray).Data().First(); List l = dic[curClass]; l.Add(x); if (l.Count > maxCount) { maxCount = l.Count; } dic.Add(curClass, l); } NDArray points_by_class = np.zeros(dic.Count,maxCount,X.shape[1]); foreach (KeyValuePair> kv in dic) { var cls = kv.Value.ToArray(); for (int i = 0; i < dic.Count; i++) { points_by_class[i] = dic[i]; } } // estimate mean and variance for each class / feature // shape : nb_classes * nb_features var cons = tf.constant(points_by_class); Tuple tup = tf.nn.moments(cons, new int[]{1}); var mean = tup.Item1; var variance = tup.Item2; // Create a 3x2 univariate normal distribution with the // Known mean and variance // var dist = tf.distributions.Normal(loc=mean, scale=tf.sqrt(variance)); } public void predict (NDArray X) { // assert self.dist is not None // nb_classes, nb_features = map(int, self.dist.scale.shape) throw new NotFiniteNumberException(); } } }