using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Text; using Tensorflow; using Tensorflow.Keras.Engine; using TensorFlowNET.Examples.Text.cnn_models; using TensorFlowNET.Examples.TextClassification; using TensorFlowNET.Examples.Utility; namespace TensorFlowNET.Examples.CnnTextClassification { /// /// https://github.com/dongjun-Lee/text-classification-models-tf /// public class TextClassificationTrain : Python, IExample { public int Priority => 100; public bool Enabled { get; set; } = false; public string Name => "Text Classification"; public int? DataLimit = null; public bool ImportGraph { get; set; } = true; private string dataDir = "text_classification"; private string dataFileName = "dbpedia_csv.tar.gz"; public string model_name = "vd_cnn"; // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn private const int CHAR_MAX_LEN = 1014; private const int NUM_CLASS = 2; protected float loss_value = 0; public bool Run() { PrepareData(); return with(tf.Session(), sess => { if (ImportGraph) return RunWithImportedGraph(sess); else return RunWithBuiltGraph(sess); }); } protected virtual bool RunWithImportedGraph(Session sess) { var graph = tf.Graph().as_default(); Console.WriteLine("Building dataset..."); var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit); var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f); var meta_file = model_name + "_untrained.meta"; tf.train.import_meta_graph(Path.Join("graph", meta_file)); //sess.run(tf.global_variables_initializer()); Tensor is_training = graph.get_operation_by_name("is_training"); Tensor model_x = graph.get_operation_by_name("x"); Tensor model_y = graph.get_operation_by_name("y"); //Tensor loss = graph.get_operation_by_name("loss"); //Tensor accuracy = graph.get_operation_by_name("accuracy"); return false; } protected virtual bool RunWithBuiltGraph(Session session) { Console.WriteLine("Building dataset..."); var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit); var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f); ITextClassificationModel model = null; switch (model_name) // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn { case "word_cnn": case "char_cnn": case "word_rnn": case "att_rnn": case "rcnn": throw new NotImplementedException(); break; case "vd_cnn": model=new VdCnn(alphabet_size, CHAR_MAX_LEN, NUM_CLASS); break; } // todo train the model return false; } private (int[][], int[][], int[], int[]) train_test_split(int[][] x, int[] y, float test_size = 0.3f) { int len = x.Length; int classes = y.Distinct().Count(); int samples = len / classes; int train_size = int.Parse((samples * (1 - test_size)).ToString()); var train_x = new List(); var valid_x = new List(); var train_y = new List(); var valid_y = new List(); for (int i = 0; i < classes; i++) { for (int j = 0; j < samples; j++) { int idx = i * samples + j; if (idx < train_size + samples * i) { train_x.Add(x[idx]); train_y.Add(y[idx]); } else { valid_x.Add(x[idx]); valid_y.Add(y[idx]); } } } return (train_x.ToArray(), valid_x.ToArray(), train_y.ToArray(), valid_y.ToArray()); } public void PrepareData() { string url = "https://github.com/le-scientifique/torchDatasets/raw/master/dbpedia_csv.tar.gz"; Web.Download(url, dataDir, dataFileName); Compress.ExtractTGZ(Path.Join(dataDir, dataFileName), dataDir); if (ImportGraph) { // download graph meta data var meta_file = model_name + "_untrained.meta"; url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/" + meta_file; Web.Download(url, "graph", meta_file); } } } }