using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using Tensorflow;
using Tensorflow.Keras.Engine;
using TensorFlowNET.Examples.Text.cnn_models;
using TensorFlowNET.Examples.TextClassification;
using TensorFlowNET.Examples.Utility;
namespace TensorFlowNET.Examples.CnnTextClassification
{
///
/// https://github.com/dongjun-Lee/text-classification-models-tf
///
public class TextClassificationTrain : Python, IExample
{
public int Priority => 100;
public bool Enabled { get; set; } = false;
public string Name => "Text Classification";
public int? DataLimit = null;
public bool ImportGraph { get; set; } = true;
private string dataDir = "text_classification";
private string dataFileName = "dbpedia_csv.tar.gz";
public string model_name = "vd_cnn"; // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn
private const int CHAR_MAX_LEN = 1014;
private const int NUM_CLASS = 2;
protected float loss_value = 0;
public bool Run()
{
PrepareData();
return with(tf.Session(), sess =>
{
if (ImportGraph)
return RunWithImportedGraph(sess);
else
return RunWithBuiltGraph(sess);
});
}
protected virtual bool RunWithImportedGraph(Session sess)
{
var graph = tf.Graph().as_default();
Console.WriteLine("Building dataset...");
var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit);
var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f);
var meta_file = model_name + "_untrained.meta";
tf.train.import_meta_graph(Path.Join("graph", meta_file));
//sess.run(tf.global_variables_initializer());
Tensor is_training = graph.get_operation_by_name("is_training");
Tensor model_x = graph.get_operation_by_name("x");
Tensor model_y = graph.get_operation_by_name("y");
//Tensor loss = graph.get_operation_by_name("loss");
//Tensor accuracy = graph.get_operation_by_name("accuracy");
return false;
}
protected virtual bool RunWithBuiltGraph(Session session)
{
Console.WriteLine("Building dataset...");
var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit);
var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f);
ITextClassificationModel model = null;
switch (model_name) // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn
{
case "word_cnn":
case "char_cnn":
case "word_rnn":
case "att_rnn":
case "rcnn":
throw new NotImplementedException();
break;
case "vd_cnn":
model=new VdCnn(alphabet_size, CHAR_MAX_LEN, NUM_CLASS);
break;
}
// todo train the model
return false;
}
private (int[][], int[][], int[], int[]) train_test_split(int[][] x, int[] y, float test_size = 0.3f)
{
int len = x.Length;
int classes = y.Distinct().Count();
int samples = len / classes;
int train_size = int.Parse((samples * (1 - test_size)).ToString());
var train_x = new List();
var valid_x = new List();
var train_y = new List();
var valid_y = new List();
for (int i = 0; i < classes; i++)
{
for (int j = 0; j < samples; j++)
{
int idx = i * samples + j;
if (idx < train_size + samples * i)
{
train_x.Add(x[idx]);
train_y.Add(y[idx]);
}
else
{
valid_x.Add(x[idx]);
valid_y.Add(y[idx]);
}
}
}
return (train_x.ToArray(), valid_x.ToArray(), train_y.ToArray(), valid_y.ToArray());
}
public void PrepareData()
{
string url = "https://github.com/le-scientifique/torchDatasets/raw/master/dbpedia_csv.tar.gz";
Web.Download(url, dataDir, dataFileName);
Compress.ExtractTGZ(Path.Join(dataDir, dataFileName), dataDir);
if (ImportGraph)
{
// download graph meta data
var meta_file = model_name + "_untrained.meta";
url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/" + meta_file;
Web.Download(url, "graph", meta_file);
}
}
}
}