using NumSharp; using System; using System.Collections.Generic; using System.Text; using Tensorflow; namespace TensorFlowNET.Examples.Utility { public class DataSetMnist : IDataSet { public int num_examples { get; } public int epochs_completed { get; private set; } public int index_in_epoch { get; private set; } public NDArray data { get; private set; } public NDArray labels { get; private set; } public DataSetMnist(NDArray images, NDArray labels, TF_DataType dtype, bool reshape) { num_examples = images.shape[0]; images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]); images.astype(dtype.as_numpy_datatype()); images = np.multiply(images, 1.0f / 255.0f); labels.astype(dtype.as_numpy_datatype()); data = images; this.labels = labels; epochs_completed = 0; index_in_epoch = 0; } public (NDArray, NDArray) next_batch(int batch_size, bool fake_data = false, bool shuffle = true) { var start = index_in_epoch; // Shuffle for the first epoch if(epochs_completed == 0 && start == 0 && shuffle) { var perm0 = np.arange(num_examples); np.random.shuffle(perm0); data = data[perm0]; labels = labels[perm0]; } // Go to the next epoch if (start + batch_size > num_examples) { // Finished epoch epochs_completed += 1; // Get the rest examples in this epoch var rest_num_examples = num_examples - start; //var images_rest_part = _images[np.arange(start, _num_examples)]; //var labels_rest_part = _labels[np.arange(start, _num_examples)]; // Shuffle the data if (shuffle) { var perm = np.arange(num_examples); np.random.shuffle(perm); data = data[perm]; labels = labels[perm]; } start = 0; index_in_epoch = batch_size - rest_num_examples; var end = index_in_epoch; var images_new_part = data[np.arange(start, end)]; var labels_new_part = labels[np.arange(start, end)]; /*return (np.concatenate(new float[][] { images_rest_part.Data(), images_new_part.Data() }, axis: 0), np.concatenate(new float[][] { labels_rest_part.Data(), labels_new_part.Data() }, axis: 0));*/ return (images_new_part, labels_new_part); } else { index_in_epoch += batch_size; var end = index_in_epoch; return (data[np.arange(start, end)], labels[np.arange(start, end)]); } } } }