/***************************************************************************** Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ******************************************************************************/ using NumSharp; using System; using System.Diagnostics; using System.IO; using Tensorflow; using TensorFlowNET.Examples.Utility; using static Tensorflow.Python; namespace TensorFlowNET.Examples { /// /// A logistic regression learning algorithm example using TensorFlow library. /// This example is using the MNIST database of handwritten digits /// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py /// public class LogisticRegression : IExample { public bool Enabled { get; set; } = true; public string Name => "Logistic Regression"; public bool IsImportingGraph { get; set; } = false; public int training_epochs = 10; public int? train_size = null; public int validation_size = 5000; public int? test_size = null; public int batch_size = 100; private float learning_rate = 0.01f; private int display_step = 1; Datasets mnist; public bool Run() { PrepareData(); // tf Graph Input var x = tf.placeholder(tf.float32, new TensorShape(-1, 784)); // mnist data image of shape 28*28=784 var y = tf.placeholder(tf.float32, new TensorShape(-1, 10)); // 0-9 digits recognition => 10 classes // Set model weights var W = tf.Variable(tf.zeros(new Shape(784, 10))); var b = tf.Variable(tf.zeros(new Shape(10))); // Construct model var pred = tf.nn.softmax(tf.matmul(x, W) + b); // Softmax // Minimize error using cross entropy var cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices: 1)); // Gradient Descent var optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost); // Initialize the variables (i.e. assign their default value) var init = tf.global_variables_initializer(); var sw = new Stopwatch(); return with(tf.Session(), sess => { // Run the initializer sess.run(init); // Training cycle foreach (var epoch in range(training_epochs)) { sw.Start(); var avg_cost = 0.0f; var total_batch = mnist.train.num_examples / batch_size; // Loop over all batches foreach (var i in range(total_batch)) { var (batch_xs, batch_ys) = mnist.train.next_batch(batch_size); // Run optimization op (backprop) and cost op (to get loss value) var result = sess.run(new object[] { optimizer, cost }, new FeedItem(x, batch_xs), new FeedItem(y, batch_ys)); float c = result[1]; // Compute average loss avg_cost += c / total_batch; } sw.Stop(); // Display logs per epoch step if ((epoch + 1) % display_step == 0) print($"Epoch: {(epoch + 1).ToString("D4")} Cost: {avg_cost.ToString("G9")} Elapse: {sw.ElapsedMilliseconds}ms"); sw.Reset(); } print("Optimization Finished!"); // SaveModel(sess); // Test model var correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)); // Calculate accuracy var accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)); float acc = accuracy.eval(new FeedItem(x, mnist.test.data), new FeedItem(y, mnist.test.labels)); print($"Accuracy: {acc.ToString("F4")}"); return acc > 0.9; }); } public void PrepareData() { mnist = MNIST.read_data_sets("mnist", one_hot: true, train_size: train_size, validation_size: validation_size, test_size: test_size); } public void SaveModel(Session sess) { var saver = tf.train.Saver(); var save_path = saver.save(sess, "logistic_regression/model.ckpt"); tf.train.write_graph(sess.graph, "logistic_regression", "model.pbtxt", as_text: true); FreezeGraph.freeze_graph(input_graph: "logistic_regression/model.pbtxt", input_saver: "", input_binary: false, input_checkpoint: "logistic_regression/model.ckpt", output_node_names: "Softmax", restore_op_name: "save/restore_all", filename_tensor_name: "save/Const:0", output_graph: "logistic_regression/model.pb", clear_devices: true, initializer_nodes: ""); } public void Predict(Session sess) { var graph = new Graph().as_default(); graph.Import(Path.Join("logistic_regression", "model.pb")); // restoring the model // var saver = tf.train.import_meta_graph("logistic_regression/tensorflowModel.ckpt.meta"); // saver.restore(sess, tf.train.latest_checkpoint('logistic_regression')); var pred = graph.OperationByName("Softmax"); var output = pred.outputs[0]; var x = graph.OperationByName("Placeholder"); var input = x.outputs[0]; // predict var (batch_xs, batch_ys) = mnist.train.next_batch(10); var results = sess.run(output, new FeedItem(input, batch_xs[np.arange(1)])); if (results.argmax() == (batch_ys[0] as NDArray).argmax()) print("predicted OK!"); else throw new ValueError("predict error, should be 90% accuracy"); } public Graph ImportGraph() { throw new NotImplementedException(); } public Graph BuildGraph() { throw new NotImplementedException(); } public void Train(Session sess) { throw new NotImplementedException(); } public void Test(Session sess) { throw new NotImplementedException(); } } }