@@ -0,0 +1,22 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow | |||
{ | |||
public class c_api_util | |||
{ | |||
public static TF_Output tf_output(IntPtr c_op, int index) => new TF_Output(c_op, index); | |||
public static ImportGraphDefOptions ScopedTFImportGraphDefOptions() => new ImportGraphDefOptions(); | |||
public static IntPtr tf_buffer(byte[] data) | |||
{ | |||
if (data != null) | |||
throw new NotImplementedException(""); | |||
// var buf = c_api.TF_NewBufferFromString(data); | |||
else | |||
throw new NotImplementedException(""); | |||
} | |||
} | |||
} |
@@ -0,0 +1,158 @@ | |||
using Google.Protobuf; | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using System.Text; | |||
using static Tensorflow.OpDef.Types; | |||
namespace Tensorflow | |||
{ | |||
public class importer | |||
{ | |||
public static ITensorOrOperation[] import_graph_def(GraphDef graph_def, | |||
Dictionary<string, Tensor> input_map = null, | |||
string[] return_elements = null, | |||
string name = "", | |||
OpList producer_op_list = null) | |||
{ | |||
var op_dict = op_def_registry.get_registered_ops(); | |||
graph_def = _ProcessGraphDefParam(graph_def, op_dict); | |||
input_map = _ProcessInputMapParam(input_map); | |||
return_elements = _ProcessReturnElementsParam(return_elements); | |||
if (producer_op_list != null) | |||
_RemoveDefaultAttrs(op_dict, producer_op_list, graph_def); | |||
string prefix = ""; | |||
var graph = ops.get_default_graph(); | |||
Python.with<ops.name_scope>(new ops.name_scope(name, "import", input_map.Values), scope => | |||
{ | |||
/*prefix = scope; | |||
if (!string.IsNullOrEmpty(prefix)) | |||
prefix = prefix.Substring(0, prefix.Length - 1); | |||
else | |||
prefix = "";*/ | |||
// Generate any input map tensors inside name scope | |||
input_map = _ConvertInputMapValues(name, input_map); | |||
}); | |||
var scoped_options = c_api_util.ScopedTFImportGraphDefOptions(); | |||
_PopulateTFImportGraphDefOptions(scoped_options, prefix, input_map, return_elements); | |||
var bytes = graph_def.ToByteString().ToArray(); | |||
var status = new Status(); | |||
c_api.TF_GraphImportGraphDefWithResults(graph, IntPtr.Zero, scoped_options, status); | |||
throw new NotImplementedException("importer.import_graph_def"); | |||
} | |||
public static void _PopulateTFImportGraphDefOptions(ImportGraphDefOptions options, | |||
string prefix, | |||
Dictionary<string, Tensor> input_map, | |||
string[] return_elements) | |||
{ | |||
c_api.TF_ImportGraphDefOptionsSetPrefix(options, prefix); | |||
c_api.TF_ImportGraphDefOptionsSetUniquifyNames(options, (char)1); | |||
foreach(var input in input_map) | |||
{ | |||
throw new NotImplementedException("_PopulateTFImportGraphDefOptions"); | |||
} | |||
if (return_elements == null) | |||
return_elements = new string[0]; | |||
foreach (var name in return_elements) | |||
{ | |||
throw new NotImplementedException("_PopulateTFImportGraphDefOptions"); | |||
} | |||
} | |||
public static Dictionary<string, Tensor> _ConvertInputMapValues(string name, Dictionary<string, Tensor> input_map) | |||
{ | |||
return input_map; | |||
} | |||
public static GraphDef _ProcessGraphDefParam(GraphDef graph_def, Dictionary<string, OpDef> op_dict) | |||
{ | |||
foreach(var node in graph_def.Node) | |||
{ | |||
if (!op_dict.ContainsKey(node.Op)) | |||
continue; | |||
var op_def = op_dict[node.Op]; | |||
_SetDefaultAttrValues(node, op_def); | |||
} | |||
return graph_def; | |||
} | |||
private static void _SetDefaultAttrValues(NodeDef node_def, OpDef op_def) | |||
{ | |||
foreach(var attr_def in op_def.Attr) | |||
{ | |||
var key = attr_def.Name; | |||
if(attr_def.DefaultValue != null) | |||
{ | |||
var value = node_def.Attr[key]; | |||
if (value == null) | |||
node_def.Attr[key] = attr_def.DefaultValue; | |||
} | |||
} | |||
} | |||
private static Dictionary<string, Tensor> _ProcessInputMapParam(Dictionary<string, Tensor> input_map) | |||
{ | |||
if (input_map == null) | |||
return new Dictionary<string, Tensor>(); | |||
return input_map; | |||
} | |||
private static string[] _ProcessReturnElementsParam(string[] return_elements) | |||
{ | |||
if (return_elements == null) | |||
return null; | |||
return return_elements; | |||
} | |||
private static void _RemoveDefaultAttrs(Dictionary<string, OpDef> op_dict, OpList producer_op_list, GraphDef graph_def) | |||
{ | |||
var producer_op_dict = new Dictionary<string, OpDef>(); | |||
producer_op_list.Op.Select(op => | |||
{ | |||
producer_op_dict[op.Name] = op; | |||
return op; | |||
}).ToArray(); | |||
foreach(var node in graph_def.Node) | |||
{ | |||
// Remove any default attr values that aren't in op_def. | |||
if (producer_op_dict.ContainsKey(node.Op)) | |||
{ | |||
var op_def = op_dict[node.Op]; | |||
var producer_op_def = producer_op_dict[node.Op]; | |||
foreach(var key in node.Attr) | |||
{ | |||
if(_FindAttrInOpDef(key.Key, op_def) == null) | |||
{ | |||
var attr_def = _FindAttrInOpDef(key.Key, producer_op_def); | |||
if (attr_def != null && attr_def.DefaultValue != null && | |||
node.Attr[key.Key] == attr_def.DefaultValue) | |||
node.Attr[key.Key].ClearValue(); | |||
} | |||
} | |||
} | |||
} | |||
} | |||
private static AttrDef _FindAttrInOpDef(string name, OpDef op_def) | |||
{ | |||
return op_def.Attr.FirstOrDefault(x => x.Name == name); | |||
} | |||
} | |||
} |
@@ -1,5 +1,6 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.IO; | |||
using System.Linq; | |||
using System.Text; | |||
using static Tensorflow.MetaGraphDef.Types; | |||
@@ -8,6 +9,59 @@ namespace Tensorflow | |||
{ | |||
public class meta_graph | |||
{ | |||
public static MetaGraphDef read_meta_graph_file(string filename) | |||
{ | |||
var bytes = File.ReadAllBytes(filename); | |||
var meta_graph_def = MetaGraphDef.Parser.ParseFrom(bytes); | |||
return meta_graph_def; | |||
} | |||
public static void import_scoped_meta_graph_with_return_elements(MetaGraphDef meta_graph_or_file, | |||
bool clear_devices = false, | |||
string import_scope = "", | |||
Dictionary<string, Tensor> input_map = null, | |||
string unbound_inputs_col_name = "unbound_inputs", | |||
string[] return_elements = null) | |||
{ | |||
var meta_graph_def = meta_graph_or_file; | |||
if (!string.IsNullOrEmpty(unbound_inputs_col_name)) | |||
{ | |||
foreach(var col in meta_graph_def.CollectionDef) | |||
{ | |||
if(col.Key == unbound_inputs_col_name) | |||
{ | |||
throw new NotImplementedException("import_scoped_meta_graph_with_return_elements"); | |||
} | |||
} | |||
} | |||
// Sets graph to default graph if it's not passed in. | |||
var graph = ops.get_default_graph(); | |||
// Gathers the list of nodes we are interested in. | |||
OpList producer_op_list = null; | |||
if (meta_graph_def.MetaInfoDef.StrippedOpList != null) | |||
producer_op_list = meta_graph_def.MetaInfoDef.StrippedOpList; | |||
var input_graph_def = meta_graph_def.GraphDef; | |||
// Remove all the explicit device specifications for this node. This helps to | |||
// make the graph more portable. | |||
if (clear_devices) | |||
foreach (var node in input_graph_def.Node) | |||
node.Device = ""; | |||
var scope_to_prepend_to_names = graph.unique_name("", mark_as_used: false); | |||
importer.import_graph_def(input_graph_def, | |||
name: scope_to_prepend_to_names, | |||
input_map: input_map, | |||
producer_op_list: producer_op_list, | |||
return_elements: return_elements); | |||
// Restores all the other collections. | |||
var variable_objects = new Dictionary<string, RefVariable>(); | |||
} | |||
/// <summary> | |||
/// Returns `MetaGraphDef` proto. Optionally writes it to filename. | |||
/// </summary> | |||
@@ -218,6 +218,18 @@ namespace Tensorflow | |||
[DllImport(TensorFlowLibName)] | |||
public static extern void TF_ImportGraphDefOptionsSetPrefix(IntPtr ops, string prefix); | |||
/// <summary> | |||
/// Set whether to uniquify imported operation names. If true, imported operation | |||
/// names will be modified if their name already exists in the graph. If false, | |||
/// conflicting names will be treated as an error. Note that this option has no | |||
/// effect if a prefix is set, since the prefix will guarantee all names are | |||
/// unique. Defaults to false. | |||
/// </summary> | |||
/// <param name="ops">TF_ImportGraphDefOptions*</param> | |||
/// <param name="uniquify_prefix">unsigned char</param> | |||
[DllImport(TensorFlowLibName)] | |||
public static extern void TF_ImportGraphDefOptionsSetUniquifyNames(IntPtr ops, char uniquify_prefix); | |||
/// <summary> | |||
/// Fetches the return operations requested via | |||
/// TF_ImportGraphDefOptionsAddReturnOperation(). The number of fetched | |||
@@ -4,7 +4,7 @@ | |||
<TargetFramework>netstandard2.0</TargetFramework> | |||
<AssemblyName>TensorFlow.NET</AssemblyName> | |||
<RootNamespace>Tensorflow</RootNamespace> | |||
<Version>0.1.0</Version> | |||
<Version>0.2.0</Version> | |||
<Authors>Haiping Chen</Authors> | |||
<Company>SciSharp STACK</Company> | |||
<GeneratePackageOnBuild>true</GeneratePackageOnBuild> | |||
@@ -16,10 +16,13 @@ | |||
<PackageTags>TensorFlow, NumSharp, SciSharp, MachineLearning, TensorFlow.NET</PackageTags> | |||
<Description>Google's TensorFlow binding in .NET Standard. | |||
Docs: https://tensorflownet.readthedocs.io</Description> | |||
<AssemblyVersion>0.1.0.0</AssemblyVersion> | |||
<PackageReleaseNotes>Implemented the tf.Variable(). | |||
TensorFlow 1.13 RC.</PackageReleaseNotes> | |||
<AssemblyVersion>0.2.0.0</AssemblyVersion> | |||
<PackageReleaseNotes>Added a bunch of APIs. | |||
Fixed String tensor creation bug. | |||
Upgraded to TensorFlow 1.13 RC-1. | |||
</PackageReleaseNotes> | |||
<LangVersion>7.2</LangVersion> | |||
<FileVersion>0.2.0.0</FileVersion> | |||
</PropertyGroup> | |||
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|AnyCPU'"> | |||
@@ -193,6 +193,13 @@ namespace Tensorflow | |||
return _is_empty ? string.Empty : model_checkpoint_path; | |||
} | |||
public Saver import_meta_graph(string meta_graph_or_file, | |||
bool clear_devices = false, | |||
string import_scope = "") | |||
{ | |||
return saver._import_meta_graph_with_return_elements(meta_graph_or_file, clear_devices, import_scope); | |||
} | |||
/// <summary> | |||
/// Writes `MetaGraphDef` to save_path/filename. | |||
/// </summary> | |||
@@ -0,0 +1,27 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow | |||
{ | |||
public class saver | |||
{ | |||
public static Saver _import_meta_graph_with_return_elements(string meta_graph_or_file, | |||
bool clear_devices = false, | |||
string import_scope = "", | |||
string[] return_elements = null) | |||
{ | |||
var meta_graph_def = meta_graph.read_meta_graph_file(meta_graph_or_file); | |||
meta_graph.import_scoped_meta_graph_with_return_elements( | |||
meta_graph_def, | |||
clear_devices: clear_devices, | |||
import_scope: import_scope, | |||
return_elements: return_elements); | |||
return null; | |||
/*var (imported_vars, imported_return_elements) = ( | |||
, false);*/ | |||
} | |||
} | |||
} |
@@ -14,6 +14,12 @@ namespace Tensorflow | |||
public static Saver Saver() => new Saver(); | |||
public static string write_graph(Graph graph, string logdir, string name, bool as_text = true) => graph_io.write_graph(graph, logdir, name, as_text); | |||
public static Saver import_meta_graph(string meta_graph_or_file, | |||
bool clear_devices = false, | |||
string import_scope = "") => saver._import_meta_graph_with_return_elements(meta_graph_or_file, | |||
clear_devices, | |||
import_scope); | |||
} | |||
} | |||
} |
@@ -1,14 +0,0 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow | |||
{ | |||
public class c_api_util | |||
{ | |||
public static TF_Output tf_output(IntPtr c_op, int index) | |||
{ | |||
return new TF_Output(c_op, index); | |||
} | |||
} | |||
} |
@@ -7,7 +7,7 @@ | |||
<ItemGroup> | |||
<PackageReference Include="NumSharp" Version="0.7.1" /> | |||
<PackageReference Include="TensorFlow.NET" Version="0.1.0" /> | |||
<PackageReference Include="TensorFlow.NET" Version="0.2.0" /> | |||
</ItemGroup> | |||
<ItemGroup> | |||
@@ -20,7 +20,7 @@ | |||
<PackageReference Include="MSTest.TestAdapter" Version="1.4.0" /> | |||
<PackageReference Include="MSTest.TestFramework" Version="1.4.0" /> | |||
<PackageReference Include="NumSharp" Version="0.7.1" /> | |||
<PackageReference Include="TensorFlow.NET" Version="0.1.0" /> | |||
<PackageReference Include="TensorFlow.NET" Version="0.2.0" /> | |||
</ItemGroup> | |||
<ItemGroup> | |||
@@ -20,9 +20,10 @@ namespace TensorFlowNET.UnitTest | |||
[TestMethod] | |||
public void ImportGraph() | |||
{ | |||
var v = tf.Variable(0, name: "my_variable"); | |||
var sess = tf.Session(); | |||
tf.train.write_graph(sess.graph, "/tmp/my-model", "train2.pbtxt"); | |||
with<Session>(tf.Session(), sess => | |||
{ | |||
var new_saver = tf.train.import_meta_graph("C:/tmp/my-model.meta"); | |||
}); | |||
} | |||
[TestMethod] | |||
@@ -45,6 +46,7 @@ namespace TensorFlowNET.UnitTest | |||
}); | |||
} | |||
[TestMethod] | |||
public void Save2() | |||
{ | |||
var v1 = tf.get_variable("v1", shape: new TensorShape(3), initializer: tf.zeros_initializer); | |||