Added doc comment to array_ops.gather(), and implemented using ExecuteOp() Elaborated unit tests for gather, added one for slice()tags/v0.40-tf2.4-tstring
@@ -69,7 +69,17 @@ namespace Tensorflow | |||
float maxval = 1, | |||
TF_DataType dtype = TF_DataType.TF_FLOAT, | |||
int? seed = null, | |||
string name = null) => random_ops.random_uniform(shape, minval, maxval, dtype, seed, name); | |||
string name = null) | |||
{ | |||
if (dtype.is_integer()) | |||
{ | |||
return random_ops.random_uniform_int(shape, (int)minval, (int)maxval, dtype, seed, name); | |||
} | |||
else | |||
{ | |||
return random_ops.random_uniform(shape, minval, maxval, dtype, seed, name); | |||
} | |||
} | |||
public Tensor truncated_normal(TensorShape shape, | |||
float mean = 0.0f, | |||
@@ -843,7 +843,22 @@ namespace Tensorflow | |||
return gen_array_ops.concat_v2(values, axis, name: name); | |||
} | |||
public static Tensor gather<T1, T2>(T1 @params, T2 indices, string name = null, int axis = 0) | |||
/// <summary> | |||
/// Gather slices from `params` according to `indices`. `indices` must be an integer tensor of any dimension(often 1-D). | |||
/// </summary> | |||
/// <typeparam name="T1">Element type of the indexed tensor.</typeparam> | |||
/// <typeparam name="T2">Element type of the index tensor.</typeparam> | |||
/// <param name="params">The `Tensor` from which to gather values. Must be at least rank `axis + 1`.</param> | |||
/// <param name="indices">The index `Tensor`. Must be one of the following types: `int32`, `int64`. The values must be in range `[0, params.shape[axis])`.</param> | |||
/// <param name="name">A name for the operation (optional).</param> | |||
/// <param name="axis"> | |||
/// A `Tensor`. Must be one of the following types: `int32`, `int64`. | |||
/// The `axis` in `params` to gather `indices` from.Must be greater than or equal to `batch_dims`. | |||
/// Defaults to the first non-batch dimension. Supports negative indexes. | |||
/// </param> | |||
/// <param name="batch_dims">An integer. The number of batch dimensions. Must be less than or equal to rank(indices).</param> | |||
/// <returns></returns> | |||
public static Tensor gather<T1, T2>(T1 @params, T2 indices, string name = null, int axis = 0, int batch_dims = 0) | |||
{ | |||
if (axis != 0) | |||
return gen_array_ops.gather_v2(@params, indices, axis, name: name); | |||
@@ -913,7 +928,7 @@ namespace Tensorflow | |||
} | |||
public static Tensor slice(Tensor input, Tensor[] begin, Tensor[] size, string name = null) | |||
=> gen_array_ops.slice(input, begin, size, name: name); | |||
=> gen_array_ops.slice(input, begin, size, name: name); | |||
public static Tensor slice<Tb, Ts>(Tensor input, Tb begin, Ts size, string name = null) | |||
=> gen_array_ops.slice(input, begin, size, name: name); | |||
@@ -928,6 +943,7 @@ namespace Tensorflow | |||
} | |||
}); | |||
public static Tensor stack(object values, int axis = 0, string name = "stack") | |||
{ | |||
if (axis == 0) | |||
@@ -117,28 +117,13 @@ namespace Tensorflow | |||
=> tf.Context.ExecuteOp("ExpandDims", name, new ExecuteOpArgs(input, axis) | |||
.SetAttributes(new { dim = axis })); | |||
public static Tensor gather_v2<T1, T2>(T1 @params, T2 indices, int axis, string name = null) | |||
public static Tensor gather_v2<T1, T2>(T1 @params, T2 indices, int axis, int batch_dims = 0, string name = null) | |||
{ | |||
if (tf.Context.executing_eagerly()) | |||
{ | |||
try | |||
{ | |||
var results = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("GatherV2", name, @params, indices, axis, "batch_dims", 0) | |||
{ | |||
ctx = tf.Context, | |||
device_name = tf.Context.DeviceName | |||
}); | |||
return results[0]; | |||
} | |||
catch (Exception exc) | |||
{ | |||
return gather_v2_eager_fallback(@params, indices, axis, name, tf.Context); | |||
} | |||
} | |||
var _op = tf.OpDefLib._apply_op_helper("GatherV2", name: name, new { @params, indices, axis }); | |||
return _op.outputs[0]; | |||
var result = tf.Context.ExecuteOp("GatherV2", name, new ExecuteOpArgs( | |||
@params, | |||
indices, | |||
axis).SetAttributes(new { batch_dims })); | |||
return result [0]; | |||
} | |||
private static Tensor gather_v2_eager_fallback(object @params, object indices, int axis, string name, Context ctx) | |||
@@ -380,6 +365,12 @@ namespace Tensorflow | |||
public static Tensor slice<Tb, Ts>(Tensor input, Tb begin, Ts size, string name = null) | |||
{ | |||
if (tf.executing_eagerly()) | |||
{ | |||
var outputs = tf.Runner.TFE_FastPathExecute(new FastPathOpExecInfo("Slice", name, input, begin, size)); | |||
return outputs[0]; | |||
} | |||
var _op = tf.OpDefLib._apply_op_helper("Slice", name, new { input, begin, size }); | |||
return _op.outputs[0]; | |||
} | |||
@@ -43,18 +43,8 @@ namespace Tensorflow | |||
/// <param name="name"></param> | |||
/// <returns></returns> | |||
public static Tensor random_uniform_int(Tensor shape, Tensor minval, Tensor maxval, int? seed = 0, int? seed2 = 0, string name = null) | |||
{ | |||
if (!seed.HasValue) | |||
seed = 0; | |||
if (!seed2.HasValue) | |||
seed2 = 0; | |||
var _op = tf.OpDefLib._apply_op_helper("RandomUniformInt", | |||
name: name, | |||
args: new { shape, minval, maxval, seed, seed2 }); | |||
return _op.outputs[0]; | |||
} | |||
=> tf.Context.ExecuteOp("RandomUniformInt", name, new ExecuteOpArgs(shape, minval, maxval) | |||
.SetAttributes(new { seed = seed ?? 0, seed2 = seed2 ?? 0 })); | |||
/// <summary> | |||
/// Outputs random values from a uniform distribution. | |||
@@ -81,6 +81,34 @@ namespace Tensorflow | |||
}); | |||
} | |||
/// <summary> | |||
/// Outputs random values from a uniform distribution. | |||
/// </summary> | |||
/// <param name="shape"></param> | |||
/// <param name="minval"></param> | |||
/// <param name="maxval"></param> | |||
/// <param name="dtype">The type of the output</param> | |||
/// <param name="seed">Used to create a random seed for the distribution.</param> | |||
/// <param name="name">A name for the operation</param> | |||
/// <returns>A tensor of the specified shape filled with random uniform values.</returns> | |||
public static Tensor random_uniform_int(int[] shape, | |||
int minval = 0, | |||
int maxval = 1, | |||
TF_DataType dtype = TF_DataType.TF_FLOAT, | |||
int? seed = null, | |||
string name = null) | |||
{ | |||
return tf_with(ops.name_scope(name, "random_uniform_int", new { shape, minval, maxval }), scope => | |||
{ | |||
name = scope; | |||
var (seed1, seed2) = random_seed.get_seed(seed); | |||
var tensorShape = tensor_util.shape_tensor(shape); | |||
var minTensor = ops.convert_to_tensor(minval, dtype: dtype, name: "min"); | |||
var maxTensor = ops.convert_to_tensor(maxval, dtype: dtype, name: "max"); | |||
return gen_random_ops.random_uniform_int(tensorShape, minTensor, maxTensor, seed: seed1, seed2: seed2); | |||
}); | |||
} | |||
public static Tensor random_uniform(Tensor shape, | |||
int minval = 0, | |||
Tensor maxval = null, | |||
@@ -1,5 +1,6 @@ | |||
using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
using NumSharp; | |||
using NumSharp.Utilities; | |||
using Tensorflow; | |||
using static Tensorflow.Binding; | |||
@@ -7,9 +8,48 @@ namespace TensorFlowNET.UnitTest.ManagedAPI | |||
{ | |||
[TestClass] | |||
public class ArrayOpsTest : EagerModeTestBase | |||
{ | |||
{ | |||
/// <summary> | |||
/// https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding | |||
/// https://www.tensorflow.org/api_docs/python/tf/slice | |||
/// </summary> | |||
[TestMethod] | |||
public void Slice() | |||
{ | |||
// Tests based on example code in TF documentation | |||
var input_array = tf.constant(np.array(new int[] { 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6 }).reshape(3,2,3)); | |||
var indices = tf.constant(np.array(new int[] { 0, 2 })); | |||
var r1 = array_ops.slice(input_array, new int[] { 1, 0, 0 }, new int[] { 1, 1, 3 }); | |||
Assert.AreEqual(new TensorShape(1,1,3), r1.shape); | |||
var r1np = r1.numpy(); | |||
Assert.AreEqual(r1np[0, 0, 0], 3); | |||
Assert.AreEqual(r1np[0, 0, 1], 3); | |||
Assert.AreEqual(r1np[0, 0, 2], 3); | |||
var r2 = array_ops.slice(input_array, new int[] { 1, 0, 0 }, new int[] { 1, 2, 3 }); | |||
Assert.AreEqual(new TensorShape(1, 2, 3), r2.shape); | |||
var r2np = r2.numpy(); | |||
Assert.AreEqual(r2np[0, 0, 0], 3); | |||
Assert.AreEqual(r2np[0, 0, 1], 3); | |||
Assert.AreEqual(r2np[0, 0, 2], 3); | |||
Assert.AreEqual(r2np[0, 1, 0], 4); | |||
Assert.AreEqual(r2np[0, 1, 1], 4); | |||
Assert.AreEqual(r2np[0, 1, 2], 4); | |||
var r3 = array_ops.slice(input_array, new int[] { 1, 0, 0 }, new int[] { 2, 1, 3 }); | |||
Assert.AreEqual(new TensorShape(2, 1, 3), r3.shape); | |||
var r3np = r3.numpy(); | |||
Assert.AreEqual(r3np[0, 0, 0], 3); | |||
Assert.AreEqual(r3np[0, 0, 1], 3); | |||
Assert.AreEqual(r3np[0, 0, 2], 3); | |||
Assert.AreEqual(r3np[1, 0, 0], 5); | |||
Assert.AreEqual(r3np[1, 0, 1], 5); | |||
Assert.AreEqual(r3np[1, 0, 2], 5); | |||
} | |||
/// <summary> | |||
/// https://www.tensorflow.org/api_docs/python/tf/gather | |||
/// </summary> | |||
[TestMethod] | |||
public void Gather() | |||
@@ -19,9 +59,24 @@ namespace TensorFlowNET.UnitTest.ManagedAPI | |||
var result = array_ops.gather(input_array, indices); | |||
Assert.AreEqual(new TensorShape(2, 4), result.shape); | |||
Assert.AreEqual(result.numpy()[0,0], 0.0f); | |||
Assert.AreEqual(result.numpy()[0,1], 1.0f); | |||
Assert.AreEqual(result.numpy()[1,3], 11.0f); | |||
Assert.AreEqual(result.numpy()[0, 0], 0.0f); | |||
Assert.AreEqual(result.numpy()[0, 1], 1.0f); | |||
Assert.AreEqual(result.numpy()[1, 3], 11.0f); | |||
// Tests based on example code in Python doc string for tf.gather() | |||
var p1 = tf.random.normal(new TensorShape(5, 6, 7, 8)); | |||
var i1 = tf.random_uniform(new TensorShape(10, 11), maxval: 7, dtype: tf.int32); | |||
var r1 = tf.gather(p1, i1, axis:2); | |||
Assert.AreEqual(new TensorShape(5, 6, 10, 11, 8), r1.shape); | |||
var p2 = tf.random.normal(new TensorShape(4,3)); | |||
var i2 = tf.constant(new int[,] { { 0, 2} }); | |||
var r2 = tf.gather(p2, i2, axis: 0); | |||
Assert.AreEqual(new TensorShape(1, 2, 3), r2.shape); | |||
var r3 = tf.gather(p2, i2, axis: 1); | |||
Assert.AreEqual(new TensorShape(4,1,2), r3.shape); | |||
} | |||
} | |||
} |