@@ -11,8 +11,6 @@ | |||
*master branch is based on tensorflow 2.2 now, v0.15-tensorflow1.15 is from tensorflow1.15.* | |||
TF.NET is a member project of [SciSharp STACK](https://github.com/SciSharp). | |||
 | |||
@@ -56,59 +54,40 @@ using static Tensorflow.Binding; | |||
Linear Regression: | |||
```c# | |||
// We can set a fixed init value in order to debug | |||
// Parameters | |||
int training_steps = 1000; | |||
float learning_rate = 0.01f; | |||
int display_step = 100; | |||
// We can set a fixed init value in order to demo | |||
var W = tf.Variable(-0.06f, name: "weight"); | |||
var b = tf.Variable(-0.73f, name: "bias"); | |||
var optimizer = tf.optimizers.SGD(learning_rate); | |||
// Construct a linear model | |||
var pred = tf.add(tf.multiply(X, W), b); | |||
// Mean squared error | |||
var cost = tf.reduce_sum(tf.pow(pred - Y, 2.0f)) / (2.0f * n_samples); | |||
// Gradient descent | |||
// Note, minimize() knows to modify W and b because Variable objects are trainable=True by default | |||
var optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost); | |||
// Initialize the variables (i.e. assign their default value) | |||
var init = tf.global_variables_initializer(); | |||
// Start training | |||
using(tf.Session()) | |||
// Run training for the given number of steps. | |||
foreach (var step in range(1, training_steps + 1)) | |||
{ | |||
// Run the initializer | |||
sess.run(init); | |||
// Fit all training data | |||
for (int epoch = 0; epoch < training_epochs; epoch++) | |||
// Run the optimization to update W and b values. | |||
// Wrap computation inside a GradientTape for automatic differentiation. | |||
using var g = tf.GradientTape(); | |||
// Linear regression (Wx + b). | |||
var pred = W * X + b; | |||
// Mean square error. | |||
var loss = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples); | |||
// should stop recording | |||
// Compute gradients. | |||
var gradients = g.gradient(loss, (W, b)); | |||
// Update W and b following gradients. | |||
optimizer.apply_gradients(zip(gradients, (W, b))); | |||
if (step % display_step == 0) | |||
{ | |||
foreach (var (x, y) in zip<float>(train_X, train_Y)) | |||
sess.run(optimizer, (X, x), (Y, y)); | |||
// Display logs per epoch step | |||
if ((epoch + 1) % display_step == 0) | |||
{ | |||
var c = sess.run(cost, (X, train_X), (Y, train_Y)); | |||
Console.WriteLine($"Epoch: {epoch + 1} cost={c} " + $"W={sess.run(W)} b={sess.run(b)}"); | |||
} | |||
pred = W * X + b; | |||
loss = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples); | |||
print($"step: {step}, loss: {loss.numpy()}, W: {W.numpy()}, b: {b.numpy()}"); | |||
} | |||
Console.WriteLine("Optimization Finished!"); | |||
var training_cost = sess.run(cost, (X, train_X), (Y, train_Y)); | |||
Console.WriteLine($"Training cost={training_cost} W={sess.run(W)} b={sess.run(b)}"); | |||
// Testing example | |||
var test_X = np.array(6.83f, 4.668f, 8.9f, 7.91f, 5.7f, 8.7f, 3.1f, 2.1f); | |||
var test_Y = np.array(1.84f, 2.273f, 3.2f, 2.831f, 2.92f, 3.24f, 1.35f, 1.03f); | |||
Console.WriteLine("Testing... (Mean square loss Comparison)"); | |||
var testing_cost = sess.run(tf.reduce_sum(tf.pow(pred - Y, 2.0f)) / (2.0f * test_X.shape[0]), | |||
(X, test_X), (Y, test_Y)); | |||
Console.WriteLine($"Testing cost={testing_cost}"); | |||
var diff = Math.Abs((float)training_cost - (float)testing_cost); | |||
Console.WriteLine($"Absolute mean square loss difference: {diff}"); | |||
return diff < 0.01; | |||
}); | |||
} | |||
``` | |||
Run this example in [Jupyter Notebook](https://github.com/SciSharp/SciSharpCube). | |||
@@ -25,7 +25,15 @@ TensorFlow.NET uses the .NET Standard 2.0 standard, so your new project Target F | |||
```cmd | |||
### install tensorflow C# binding | |||
PM> Install-Package TensorFlow.NET | |||
### Install tensorflow binary | |||
### For CPU version | |||
PM> Install-Package SciSharp.TensorFlow.Redist | |||
### For GPU version (CUDA and cuDNN are required) | |||
PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU | |||
``` | |||
### Start coding Hello World | |||
@@ -36,7 +44,7 @@ After installing the TensorFlow.NET package, you can use the `using Tensorflow` | |||
```csharp | |||
using System; | |||
using Tensorflow; | |||
using static Tensorflow.Binding; | |||
namespace TensorFlowNET.Examples | |||
{ | |||
@@ -8,13 +8,13 @@ In this chapter we will talk about another common data type in TensorFlow: Place | |||
var x = tf.placeholder(tf.int32); | |||
var y = x * 3; | |||
Python.with<Session>(tf.Session(), sess => | |||
using (var sess = tf.Session()) | |||
{ | |||
var result = sess.run(y, feed_dict: new FeedItem[] | |||
{ | |||
new FeedItem(x, 2) | |||
}); | |||
// (int)result should be 6; | |||
}); | |||
} | |||
``` | |||
@@ -8,7 +8,7 @@ | |||
</PropertyGroup> | |||
<ItemGroup> | |||
<PackageReference Include="SciSharp.TensorFlow.Redist" Version="2.2.0.1" /> | |||
<PackageReference Include="SciSharp.TensorFlow.Redist" Version="2.2.0.2" /> | |||
</ItemGroup> | |||
<ItemGroup> | |||
@@ -43,7 +43,7 @@ namespace Tensorflow | |||
/// </summary> | |||
public partial class c_api | |||
{ | |||
public const string TensorFlowLibName = @"D:\SciSharp\tensorflow-google\bazel-bin\tensorflow\tensorflow.dll"; | |||
public const string TensorFlowLibName = "tensorflow"; | |||
public static string StringPiece(IntPtr handle) | |||
{ | |||
@@ -186,7 +186,7 @@ namespace Tensorflow | |||
=> array_ops.slice(input, begin, size, name: name); | |||
public Tensor squeeze(Tensor input, int[] axis = null, string name = null, int squeeze_dims = -1) | |||
=> gen_array_ops.squeeze(input, axis, name); | |||
=> array_ops.squeeze(input, axis, name); | |||
/// <summary> | |||
/// Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor. | |||
@@ -217,7 +217,7 @@ namespace Tensorflow | |||
Tensor off_value = null, | |||
TF_DataType dtype = TF_DataType.DtInvalid, | |||
int axis = -1, | |||
string name = null) => array_ops.one_hot(indices, depth, dtype: dtype, axis: axis, name: name); | |||
string name = null) => array_ops.one_hot(indices, ops.convert_to_tensor(depth), dtype: dtype, axis: axis, name: name); | |||
/// <summary> | |||
/// Pads a tensor | |||
@@ -0,0 +1,30 @@ | |||
/***************************************************************************** | |||
Copyright 2020 The TensorFlow.NET Authors. All Rights Reserved. | |||
Licensed under the Apache License, Version 2.0 (the "License"); | |||
you may not use this file except in compliance with the License. | |||
You may obtain a copy of the License at | |||
http://www.apache.org/licenses/LICENSE-2.0 | |||
Unless required by applicable law or agreed to in writing, software | |||
distributed under the License is distributed on an "AS IS" BASIS, | |||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
See the License for the specific language governing permissions and | |||
limitations under the License. | |||
******************************************************************************/ | |||
using NumSharp; | |||
namespace Tensorflow | |||
{ | |||
public partial class tensorflow | |||
{ | |||
public DataOps data { get; } = new DataOps(); | |||
public class DataOps | |||
{ | |||
public TensorSliceDataset Dataset { get; } = new TensorSliceDataset(); | |||
} | |||
} | |||
} |
@@ -0,0 +1,25 @@ | |||
/***************************************************************************** | |||
Copyright 2020 Haiping Chen. All Rights Reserved. | |||
Licensed under the Apache License, Version 2.0 (the "License"); | |||
you may not use this file except in compliance with the License. | |||
You may obtain a copy of the License at | |||
http://www.apache.org/licenses/LICENSE-2.0 | |||
Unless required by applicable law or agreed to in writing, software | |||
distributed under the License is distributed on an "AS IS" BASIS, | |||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
See the License for the specific language governing permissions and | |||
limitations under the License. | |||
******************************************************************************/ | |||
using NumSharp; | |||
namespace Tensorflow | |||
{ | |||
public partial class tensorflow | |||
{ | |||
public KerasApi keras { get; } = new KerasApi(); | |||
} | |||
} |
@@ -21,6 +21,13 @@ namespace Tensorflow | |||
{ | |||
public partial class tensorflow | |||
{ | |||
public MathApi math { get; } = new MathApi(); | |||
public class MathApi | |||
{ | |||
public Tensor log(Tensor x, string name = null) | |||
=> gen_math_ops.log(x, name); | |||
} | |||
public Tensor abs(Tensor x, string name = null) | |||
=> math_ops.abs(x, name); | |||
@@ -254,7 +261,7 @@ namespace Tensorflow | |||
/// Any values less than <c>clip_value_min</c> are set to <c>clip_value_min</c>. Any values | |||
/// greater than <c>clip_value_max</c> are set to <c>clip_value_max</c>. | |||
/// </remarks> | |||
public Tensor clip_by_value (Tensor t, Tensor clip_value_min, Tensor clip_value_max, string name = "ClipByValue") | |||
public Tensor clip_by_value<T1, T2>(Tensor t, T1 clip_value_min, T2 clip_value_max, string name = "ClipByValue") | |||
=> clip_ops.clip_by_value(t, clip_value_min, clip_value_max, name); | |||
public Tensor sub<Tx, Ty>(Tx a, Ty b, string name = null) | |||
@@ -14,6 +14,7 @@ | |||
limitations under the License. | |||
******************************************************************************/ | |||
using System; | |||
using Tensorflow.Operations; | |||
using Tensorflow.Operations.Activation; | |||
using static Tensorflow.Binding; | |||
@@ -182,7 +183,13 @@ namespace Tensorflow | |||
=> nn_impl.sigmoid_cross_entropy_with_logits(labels: labels, logits: logits, name: name); | |||
public Tensor softmax(Tensor logits, int axis = -1, string name = null) | |||
=> gen_nn_ops.softmax(logits, name); | |||
{ | |||
if (axis == -1) | |||
return gen_nn_ops.softmax(logits, name); | |||
else | |||
throw new NotImplementedException(""); | |||
} | |||
/// <summary> | |||
/// Computes sparse softmax cross entropy between `logits` and `labels`. | |||
@@ -38,6 +38,24 @@ namespace Tensorflow | |||
TF_DataType dtype = TF_DataType.TF_FLOAT, | |||
int? seed = null, | |||
string name = null) => random_ops.random_normal(shape, mean, stddev, dtype, seed, name); | |||
/// <summary> | |||
/// Outputs random values from a truncated normal distribution. | |||
/// </summary> | |||
/// <param name="shape"></param> | |||
/// <param name="mean"></param> | |||
/// <param name="stddev"></param> | |||
/// <param name="dtype"></param> | |||
/// <param name="seed"></param> | |||
/// <param name="name"></param> | |||
/// <returns></returns> | |||
public Tensor truncated_normal(TensorShape shape, | |||
float mean = 0.0f, | |||
float stddev = 1.0f, | |||
TF_DataType dtype = TF_DataType.TF_FLOAT, | |||
int? seed = null, | |||
string name = null) => random_ops.truncated_normal(shape, mean, stddev, dtype, seed, name); | |||
public Tensor categorical( | |||
Tensor logits, | |||
int num_samples, | |||
@@ -0,0 +1,10 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow | |||
{ | |||
public class DatasetOps | |||
{ | |||
} | |||
} |
@@ -0,0 +1,20 @@ | |||
using NumSharp; | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow | |||
{ | |||
public class TensorSliceDataset | |||
{ | |||
public TensorSliceDataset(params NDArray[] elements) | |||
{ | |||
} | |||
public TensorSliceDataset from_tensor_slices(params NDArray[] elements) | |||
{ | |||
throw new NotImplementedException(""); | |||
} | |||
} | |||
} |
@@ -1,20 +1,30 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using System.Text; | |||
using static Tensorflow.Binding; | |||
namespace Tensorflow.Eager | |||
{ | |||
public class EagerOperation : Operation | |||
{ | |||
public int NumInputs; | |||
static Dictionary<string, OpDef> op_dict; | |||
public string Name { get; set; } | |||
public new int NumInputs; | |||
public IntPtr[] InputHandles { get; set; } | |||
public Tensor[] Inputs { get; set; } | |||
public int NumOutputs; | |||
public new int NumOutputs; | |||
public IntPtr[] OutputHandles { get; set; } | |||
public Tensor[] Outputs { get; set; } | |||
public int[] SkipInputIndices { get; set; } | |||
public BindingArray SkipInputIndicesArray { get; set; } | |||
public unsafe int[] SkipInputIndices => SkipInputIndicesArray.Data.Select(x => *(int*) x).ToArray(); | |||
public string[] AttrsArray { get; set; } | |||
public EagerOperation() : base(IntPtr.Zero) { } | |||
public EagerOperation() : base(IntPtr.Zero) | |||
{ | |||
if (op_dict == null) | |||
op_dict = op_def_registry.get_registered_ops(); | |||
} | |||
public override InputList inputs | |||
{ | |||
@@ -22,13 +32,6 @@ namespace Tensorflow.Eager | |||
{ | |||
if (_inputs_val == null) | |||
{ | |||
var retval = new Tensor[NumInputs]; | |||
for (int i = 0; i < NumInputs; i++) | |||
{ | |||
} | |||
_inputs_val = new InputList(Inputs); | |||
} | |||
@@ -48,5 +51,35 @@ namespace Tensorflow.Eager | |||
return _outputs; | |||
} | |||
} | |||
public override object get_attr(string attr_name) | |||
{ | |||
object value = null; | |||
byte isList = 0; | |||
using var status = new Status(); | |||
var attrType = c_api.TFE_OpNameGetAttrType(tf.context, Name, attr_name, ref isList, status.Handle); | |||
switch (attrType) | |||
{ | |||
case TF_AttrType.TF_ATTR_BOOL: | |||
value = get_attr_bool(attr_name); | |||
break; | |||
default: | |||
break; | |||
} | |||
return value; | |||
} | |||
public bool get_attr_bool(string attr_name) | |||
{ | |||
for (int i = 0; i < AttrsArray.Length; i = i + 2) | |||
if (AttrsArray[i] == attr_name) | |||
return AttrsArray[i + 1] == "1"; | |||
throw new ValueError($"Can't find attr: {attr_name}"); | |||
} | |||
public override string ToString() | |||
=> $"tf.EagerOperation {Name}"; | |||
} | |||
} |
@@ -2,6 +2,7 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using System.Threading; | |||
using static Tensorflow.Binding; | |||
namespace Tensorflow.Eager | |||
@@ -49,6 +50,10 @@ namespace Tensorflow.Eager | |||
print($"new TensorHandle {Id} {tfe_tensor_handle.ToString("x16")}"); | |||
print($"new EagerTensor {Id} {EagerTensorHandle.ToString("x16")}");*/ | |||
if (tfe_tensor_handle == IntPtr.Zero && _id == 0) | |||
{ | |||
} | |||
GarbageCollector.Increase(_handle, GCItemType.TensorHandle); | |||
GarbageCollector.Increase(tfe_tensor_handle, GCItemType.LocalTensorHandle); | |||
GarbageCollector.Increase(EagerTensorHandle, GCItemType.EagerTensorHandle); | |||
@@ -56,6 +61,9 @@ namespace Tensorflow.Eager | |||
return this; | |||
} | |||
public override IntPtr ToPointer() | |||
=> EagerTensorHandle; | |||
protected override void DisposeUnmanagedResources(IntPtr handle) | |||
{ | |||
GarbageCollector.Decrease(_handle); | |||
@@ -13,7 +13,7 @@ namespace Tensorflow.Eager | |||
public IntPtr EagerTensorHandle { get; set; } | |||
public override string Device => c_api.StringPiece(c_api.TFE_TensorHandleDeviceName(tfe_tensor_handle, status.Handle)); | |||
// public override int rank => c_api.TFE_TensorHandleNumDims(tfe_tensor_handle, status); | |||
public override int rank => c_api.TFE_TensorHandleNumDims(tfe_tensor_handle, status.Handle); | |||
public static int GetRank(IntPtr handle) | |||
{ | |||
@@ -25,7 +25,7 @@ namespace Tensorflow | |||
public delegate IntPtr gradient_function_callback(string op_name, | |||
IntPtr op_inputs, | |||
IntPtr op_outputs, | |||
int num_attrs, | |||
string attrs_string, | |||
IntPtr output_grads, | |||
IntPtr skip_input_indices); | |||
@@ -72,6 +72,9 @@ namespace Tensorflow | |||
[DllImport(TensorFlowLibName)] | |||
public static extern TF_AttrType TFE_OpGetAttrType(IntPtr op, string attr_name, ref byte is_list, SafeStatusHandle status); | |||
[DllImport(TensorFlowLibName)] | |||
public static extern TF_AttrType TFE_OpNameGetAttrType(IntPtr ct, string op_or_function_name, string attr_name, ref byte is_list, SafeStatusHandle status); | |||
/// <summary> | |||
/// Returns the length (number of tensors) of the input argument `input_name` | |||
/// found in the provided `op`. | |||
@@ -399,6 +402,7 @@ namespace Tensorflow | |||
string name, | |||
IntPtr[] inputs, | |||
int input_size, | |||
string attrs_string, | |||
TFE_FastPathExecute_SetOpAttrs set_op_attrs, | |||
IntPtr[] outputs, | |||
int output_size); | |||
@@ -31,6 +31,37 @@ namespace Tensorflow.Eager | |||
} | |||
} | |||
public static string SetOpAttrs2(params object[] attrs) | |||
{ | |||
string attr_string = string.Empty; | |||
for(int i = 0; i < attrs.Length; i = i + 2) | |||
{ | |||
object key = attrs[i]; | |||
object value = attrs[i + 1]; | |||
switch (value) | |||
{ | |||
case TF_DataType dtype: | |||
value = (int)dtype; | |||
break; | |||
case bool bVal: | |||
value = bVal ? 1 : 0; | |||
break; | |||
case int[] shape: | |||
value = shape.Length == 0 ? "null" : string.Join(" ", shape); | |||
break; | |||
default: | |||
break; | |||
} | |||
attr_string += string.IsNullOrEmpty(attr_string) ? | |||
$"{key},{value}" : | |||
$",{key},{value}"; | |||
} | |||
return attr_string; | |||
} | |||
/// <summary> | |||
/// This function will set the op attrs required. If an attr has the value of | |||
/// None, then it will read the AttrDef to get the default value and set that | |||
@@ -1,7 +1,9 @@ | |||
using Google.Protobuf.WellKnownTypes; | |||
using NumSharp.Utilities; | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using System.Reflection; | |||
using System.Runtime.InteropServices; | |||
using System.Text; | |||
using Tensorflow.Eager; | |||
@@ -72,22 +74,40 @@ namespace Tensorflow.Gradients | |||
public Tensor gradient(Tensor target, Tensor source) | |||
{ | |||
if(_recording) | |||
if (_recording) | |||
{ | |||
if (!_persistent) | |||
_pop_tape(); | |||
} | |||
var results = new[] { new EagerTensor() }; | |||
var results = EagerTensorPass.Create(); | |||
var targets = EagerTensorPass.From(target); | |||
var sources = EagerTensorPass.From(source); | |||
using Status status = new Status(c_api.TFE_TapeGradient(_tape, | |||
new [] { (target as EagerTensor).EagerTensorHandle }, 1, | |||
new [] { (source as EagerTensor).EagerTensorHandle }, 1, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
targets.Points, targets.Length, | |||
sources.Points, sources.Length, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
public unsafe (Tensor, Tensor) gradient(Tensor target, (ResourceVariable, ResourceVariable) sources) | |||
public Tensor gradient(Tensor target, ResourceVariable source) | |||
{ | |||
var results = gradient(target as EagerTensor, new[] { source }); | |||
return results[0]; | |||
} | |||
public (Tensor, Tensor) gradient(Tensor target, (ResourceVariable, ResourceVariable) sources) | |||
{ | |||
var results = gradient(target as EagerTensor, new[] { sources.Item1, sources.Item2 }); | |||
return (results[0], results[1]); | |||
} | |||
public EagerTensor[] gradient(EagerTensor target, ResourceVariable[] sources) | |||
{ | |||
if (_recording) | |||
{ | |||
@@ -95,18 +115,14 @@ namespace Tensorflow.Gradients | |||
_pop_tape(); | |||
} | |||
var results = new[] { new EagerTensor(), new EagerTensor() }; | |||
var results = EagerTensorPass.Create(sources.Length); | |||
var target_inputs = EagerTensorPass.From(target); | |||
var source_inputs = EagerTensorPass.From(sources.Select(x => x.Handle).ToArray()); | |||
using Status status = new Status(c_api.TFE_TapeGradient(_tape, | |||
new IntPtr[] | |||
{ | |||
target as EagerTensor | |||
}, 1, | |||
new IntPtr[] | |||
{ | |||
(sources.Item1.Handle as EagerTensor).EagerTensorHandle, | |||
(sources.Item2.Handle as EagerTensor).EagerTensorHandle | |||
}, 2, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
target_inputs.Points, target_inputs.Length, | |||
source_inputs.Points, source_inputs.Length, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
if (!_persistent) | |||
@@ -116,13 +132,15 @@ namespace Tensorflow.Gradients | |||
_tape = null; | |||
} | |||
return (results[0].Resolve(), results[1].Resolve()); | |||
return results.Items.Select(x => x.Resolve()).ToArray(); | |||
} | |||
public void Dispose() | |||
{ | |||
if (_recording) | |||
_pop_tape(); | |||
tf.tensorMgr.Reset(); | |||
} | |||
} | |||
} |
@@ -310,23 +310,26 @@ namespace Tensorflow.Gradients | |||
var input_shape = op.inputs[0]._shape_tuple(); | |||
var output_shape = op.outputs[0]._shape_tuple(); | |||
Tensor result, factor_tensor; | |||
if(input_shape != null && | |||
output_shape != null) | |||
{ | |||
var input_size = np.prod(input_shape); | |||
var output_size = np.prod(output_shape); | |||
var factor = (int)input_size / Math.Max((int)output_size, 1); | |||
var factor_tensor = constant_op.constant((int)input_size, dtype: sum_grad.dtype); | |||
return new Tensor[] { math_ops.truediv(sum_grad, math_ops.cast(factor_tensor, sum_grad.dtype)), null }; | |||
factor_tensor = constant_op.constant(factor, dtype: sum_grad.dtype); | |||
} | |||
else | |||
{ | |||
var input_shape_tensor = array_ops.shape(op.inputs[0]); | |||
var output_shape_tensor = array_ops.shape(op.outputs[0]); | |||
var factor = _safe_shape_div(math_ops.reduce_prod(input_shape_tensor), math_ops.reduce_prod(output_shape_tensor)); | |||
return new Tensor[] { math_ops.truediv(sum_grad, math_ops.cast(factor, sum_grad.dtype)), null }; | |||
throw new NotImplementedException(""); | |||
factor_tensor = null; | |||
} | |||
result = math_ops.truediv(sum_grad, math_ops.cast(factor_tensor, sum_grad.dtype)); | |||
return new Tensor[] { result, null }; | |||
} | |||
/// <summary> | |||
@@ -497,8 +500,8 @@ namespace Tensorflow.Gradients | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
// should add ones_rank_cache | |||
var new_shape_tensor = constant_op.constant(np.array(new int[] { 1 }) * rank, dtype: TF_DataType.TF_INT32); | |||
grad = array_ops.reshape(grad, new_shape_tensor); | |||
var new_shape = constant_op.constant(range(0, rank).Select(x => 1).ToArray(), dtype: TF_DataType.TF_INT32); | |||
grad = array_ops.reshape(grad, new_shape); | |||
} | |||
else | |||
{ | |||
@@ -513,20 +516,23 @@ namespace Tensorflow.Gradients | |||
input_shape = array_ops.shape(op.inputs[0]); | |||
return new Tensor[] { gen_array_ops.tile(grad, input_shape), null }; | |||
} | |||
else | |||
else if (!input_0_shape.Contains(-1) && !tf.context.executing_eagerly()) | |||
{ | |||
throw new NotImplementedException(""); | |||
} | |||
} | |||
} | |||
input_shape = array_ops.shape(op.inputs[0]); | |||
ops.colocate_with(input_shape); | |||
var output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1]); | |||
var tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims); | |||
grad = gen_array_ops.reshape(grad, output_shape_kept_dims); | |||
if (!op.get_attr<bool>("keep_dims")) | |||
{ | |||
ops.colocate_with(input_shape); | |||
var output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1]); | |||
// var tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims); | |||
grad = gen_array_ops.reshape(grad, output_shape_kept_dims); | |||
} | |||
return new Tensor[] { gen_array_ops.tile(grad, tile_scaling), null }; | |||
return new Tensor[] { gen_array_ops.broadcast_to(grad, input_shape), null }; | |||
} | |||
[RegisterGradient("RealDiv")] | |||
@@ -17,6 +17,7 @@ | |||
using System.Collections.Generic; | |||
using System.Diagnostics.CodeAnalysis; | |||
using System.Linq; | |||
using Tensorflow.Eager; | |||
using Tensorflow.Operations; | |||
using static Tensorflow.Binding; | |||
@@ -81,6 +82,9 @@ namespace Tensorflow | |||
/// </summary> | |||
public _ControlDependenciesController control_dependencies(object[] control_inputs) | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
return new _ControlDependenciesController(this, null); | |||
if (control_inputs == null) | |||
return new _ControlDependenciesController(this, null); | |||
@@ -0,0 +1,34 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow | |||
{ | |||
public class NullContextmanager : ITensorFlowObject | |||
{ | |||
public void __init__() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public void __enter__() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public void __del__() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public void __exit__() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public void Dispose() | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
} | |||
} |
@@ -0,0 +1,27 @@ | |||
using NumSharp; | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Datasets | |||
{ | |||
public class DatasetPass | |||
{ | |||
public (NDArray, NDArray) Train { get; set; } | |||
public (NDArray, NDArray) Test { get; set; } | |||
public void Deconstruct(out NDArray x_train, out NDArray y_train, out NDArray x_test, out NDArray y_test) | |||
{ | |||
x_train = Train.Item1; | |||
y_train = Train.Item2; | |||
x_test = Test.Item1; | |||
y_test = Test.Item2; | |||
} | |||
public void Deconstruct(out (NDArray, NDArray) train, out (NDArray, NDArray) test) | |||
{ | |||
train = Train; | |||
test = Test; | |||
} | |||
} | |||
} |
@@ -0,0 +1,27 @@ | |||
/***************************************************************************** | |||
Copyright 2020 Haiping Chen. All Rights Reserved. | |||
Licensed under the Apache License, Version 2.0 (the "License"); | |||
you may not use this file except in compliance with the License. | |||
You may obtain a copy of the License at | |||
http://www.apache.org/licenses/LICENSE-2.0 | |||
Unless required by applicable law or agreed to in writing, software | |||
distributed under the License is distributed on an "AS IS" BASIS, | |||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
See the License for the specific language governing permissions and | |||
limitations under the License. | |||
******************************************************************************/ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Datasets | |||
{ | |||
public class KerasDataset | |||
{ | |||
public Mnist mnist { get; } = new Mnist(); | |||
} | |||
} |
@@ -0,0 +1,76 @@ | |||
/***************************************************************************** | |||
Copyright 2020 Haiping Chen. All Rights Reserved. | |||
Licensed under the Apache License, Version 2.0 (the "License"); | |||
you may not use this file except in compliance with the License. | |||
You may obtain a copy of the License at | |||
http://www.apache.org/licenses/LICENSE-2.0 | |||
Unless required by applicable law or agreed to in writing, software | |||
distributed under the License is distributed on an "AS IS" BASIS, | |||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
See the License for the specific language governing permissions and | |||
limitations under the License. | |||
******************************************************************************/ | |||
using NumSharp; | |||
using System; | |||
using System.Collections.Generic; | |||
using System.IO; | |||
using System.Net; | |||
using System.Text; | |||
namespace Tensorflow.Keras.Datasets | |||
{ | |||
public class Mnist | |||
{ | |||
string origin_folder = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/"; | |||
string file_name = "mnist.npz"; | |||
/// <summary> | |||
/// Loads the [MNIST dataset](http://yann.lecun.com/exdb/mnist/). | |||
/// </summary> | |||
/// <returns></returns> | |||
public DatasetPass load_data() | |||
{ | |||
var file = Download(); | |||
var bytes = File.ReadAllBytes(file); | |||
var datax = LoadX(bytes); | |||
var datay = LoadY(bytes); | |||
return new DatasetPass | |||
{ | |||
Train = (datax.Item1, datay.Item1), | |||
Test = (datax.Item2, datay.Item2) | |||
}; | |||
} | |||
(NDArray, NDArray) LoadX(byte[] bytes) | |||
{ | |||
var y = np.Load_Npz<byte[,,]>(bytes); | |||
return (y["x_train.npy"], y["x_test.npy"]); | |||
} | |||
(NDArray, NDArray) LoadY(byte[] bytes) | |||
{ | |||
var y = np.Load_Npz<byte[]>(bytes); | |||
return (y["y_train.npy"], y["y_test.npy"]); | |||
} | |||
string Download() | |||
{ | |||
var fileSaveTo = Path.Combine(Path.GetTempPath(), file_name); | |||
if (File.Exists(fileSaveTo)) | |||
{ | |||
Console.WriteLine($"The file {fileSaveTo} already exists"); | |||
return fileSaveTo; | |||
} | |||
using var wc = new WebClient(); | |||
wc.DownloadFileTaskAsync(origin_folder + file_name, fileSaveTo).Wait(); | |||
return fileSaveTo; | |||
} | |||
} | |||
} |
@@ -0,0 +1,12 @@ | |||
using System.Data; | |||
using Tensorflow.Keras; | |||
using Tensorflow.Keras.Datasets; | |||
namespace Tensorflow | |||
{ | |||
public class KerasApi | |||
{ | |||
public KerasDataset datasets { get; } = new KerasDataset(); | |||
public Initializers initializers { get; } = new Initializers(); | |||
} | |||
} |
@@ -36,6 +36,13 @@ namespace Tensorflow.Keras.Optimizers | |||
apply_state = new Dictionary<DeviceDType, Dictionary<string, Tensor>>(); | |||
} | |||
public void apply_gradients((Tensor, ResourceVariable) grads_and_vars, | |||
string name = null, | |||
bool experimental_aggregate_gradients = true) | |||
=> apply_gradients(new (Tensor, ResourceVariable)[] { grads_and_vars }, | |||
name: name, | |||
experimental_aggregate_gradients: experimental_aggregate_gradients); | |||
/// <summary> | |||
/// Apply gradients to variables. | |||
/// </summary> | |||
@@ -1,12 +0,0 @@ | |||
using Tensorflow.Keras; | |||
namespace Tensorflow | |||
{ | |||
public partial class tensorflow | |||
{ | |||
public class keras | |||
{ | |||
public static Initializers initializers => new Initializers(); | |||
} | |||
} | |||
} |
@@ -373,6 +373,19 @@ namespace Tensorflow.Operations | |||
public static Tensor relu_grad(Tensor gradients, Tensor features, string name = null) | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(gradients, features); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"ReluGrad", name, | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
var _op = _op_def_lib._apply_op_helper("ReluGrad", name: name, args: new | |||
{ | |||
gradients, | |||
@@ -396,6 +409,19 @@ namespace Tensorflow.Operations | |||
public static Tensor softmax(Tensor logits, string name = null) | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(logits); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"Softmax", name, | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
var _op = _op_def_lib._apply_op_helper("Softmax", name: name, args: new | |||
{ | |||
logits | |||
@@ -473,7 +499,8 @@ namespace Tensorflow.Operations | |||
"Relu", name, new IntPtr[] | |||
{ | |||
features as EagerTensor, | |||
}, 1, null, | |||
}, 1, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -492,7 +519,8 @@ namespace Tensorflow.Operations | |||
"Tanh", name, new IntPtr[] | |||
{ | |||
x as EagerTensor, | |||
}, 1, null, | |||
}, 1, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -57,7 +57,7 @@ namespace Tensorflow | |||
public int _id_value { get; set; } | |||
public Operation op => this; | |||
public TF_DataType dtype => TF_DataType.DtInvalid; | |||
public string name => _handle == IntPtr.Zero ? null : c_api.StringPiece(c_api.TF_OperationName(_handle)); | |||
public virtual string name => _handle == IntPtr.Zero ? null : c_api.StringPiece(c_api.TF_OperationName(_handle)); | |||
public string OpType => _handle == IntPtr.Zero ? null : c_api.StringPiece(c_api.TF_OperationOpType(_handle)); | |||
public string Device => _handle == IntPtr.Zero ? null : c_api.StringPiece(c_api.TF_OperationDevice(_handle)); | |||
@@ -228,7 +228,7 @@ namespace Tensorflow | |||
public T get_attr<T>(string name) | |||
=> (T)get_attr(name); | |||
public object get_attr(string name) | |||
public virtual object get_attr(string name) | |||
{ | |||
AttrValue x = null; | |||
@@ -349,7 +349,7 @@ namespace Tensorflow | |||
return fill(shape_tensor, ones, name: name); | |||
}); | |||
public static Tensor one_hot(Tensor indices, int depth, | |||
public static Tensor one_hot(Tensor indices, Tensor depth, | |||
Tensor on_value = null, | |||
Tensor off_value = null, | |||
TF_DataType dtype = TF_DataType.DtInvalid, | |||
@@ -25,7 +25,7 @@ namespace Tensorflow | |||
{ | |||
public class clip_ops | |||
{ | |||
public static Tensor clip_by_value(Tensor t, Tensor clip_value_min, Tensor clip_value_max, string name = null) | |||
public static Tensor clip_by_value<T1, T2>(Tensor t, T1 clip_value_min, T2 clip_value_max, string name = null) | |||
{ | |||
return tf_with(ops.name_scope(name, "clip_by_value", new { t, clip_value_min, clip_value_max }), delegate | |||
{ | |||
@@ -21,6 +21,7 @@ using static Tensorflow.Binding; | |||
using Tensorflow.Eager; | |||
using System.Linq; | |||
using static Tensorflow.Binding; | |||
using System.Security.Cryptography.X509Certificates; | |||
namespace Tensorflow | |||
{ | |||
@@ -60,7 +61,8 @@ namespace Tensorflow | |||
{ | |||
values as EagerTensor, | |||
axis as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -165,7 +167,8 @@ namespace Tensorflow | |||
var results = new[] { new EagerTensor() }; | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"Pack", name, | |||
values.Select(x => (x as EagerTensor).EagerTensorHandle).ToArray(), values.Length, | |||
values.Select(x => (x as EagerTensor).EagerTensorHandle).ToArray(), values.Length, | |||
wrap_tfe_src.SetOpAttrs2("axis", axis), | |||
op => wrap_tfe_src.SetOpAttrs(op, "axis", axis), | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
@@ -235,7 +238,8 @@ namespace Tensorflow | |||
"Identity", name, new IntPtr[] | |||
{ | |||
input as EagerTensor | |||
}, 1, null, | |||
}, 1, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -278,15 +282,16 @@ namespace Tensorflow | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = new[] { new EagerTensor() }; | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(dims, value); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"Fill", name, new IntPtr[] | |||
{ | |||
dims as EagerTensor, | |||
value as EagerTensor | |||
}, 2, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
"Fill", name, | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
@@ -311,7 +316,8 @@ namespace Tensorflow | |||
{ | |||
s0 as EagerTensor, | |||
s1 as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return (results[0].Resolve(), results[1].Resolve()); | |||
@@ -338,7 +344,8 @@ namespace Tensorflow | |||
{ | |||
tensor as EagerTensor, | |||
shape as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -381,13 +388,30 @@ namespace Tensorflow | |||
return _op.output; | |||
} | |||
public static Tensor one_hot(Tensor indices, int depth, | |||
public static Tensor one_hot(Tensor indices, Tensor depth, | |||
Tensor on_value = null, | |||
Tensor off_value = null, | |||
TF_DataType dtype = TF_DataType.DtInvalid, | |||
int axis = -1, | |||
string name = null) | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(indices, depth, on_value, off_value); | |||
var attrs = new object[] { "axis", axis }; | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"OneHot", name, | |||
inputs.Points, inputs.Length, | |||
wrap_tfe_src.SetOpAttrs2(attrs), | |||
op => wrap_tfe_src.SetOpAttrs(op, attrs), | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
var _op = _op_def_lib._apply_op_helper("OneHot", name, new { indices, depth, on_value, off_value, axis }); | |||
return _op.outputs[0]; | |||
} | |||
@@ -407,6 +431,21 @@ namespace Tensorflow | |||
public static Tensor select<Tx, Ty>(Tensor condition, Tx t, Ty e, string name = null) | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(condition, t, e); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"SelectV2", name, | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
var _op = _op_def_lib._apply_op_helper("Select", name, new { condition, t, e }); | |||
return _op.outputs[0]; | |||
} | |||
@@ -427,6 +466,7 @@ namespace Tensorflow | |||
{ | |||
input as EagerTensor, | |||
}, 1, | |||
wrap_tfe_src.SetOpAttrs2("out_type", out_type), | |||
op => wrap_tfe_src.SetOpAttrs(op, "out_type", out_type), | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
@@ -486,7 +526,8 @@ namespace Tensorflow | |||
{ | |||
input as EagerTensor, | |||
multiples as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -526,6 +567,14 @@ namespace Tensorflow | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = new[] { new EagerTensor() }; | |||
var attrs = new object[] | |||
{ | |||
"begin_mask", begin_mask, | |||
"end_mask", end_mask, | |||
"ellipsis_mask", ellipsis_mask, | |||
"new_axis_mask", new_axis_mask, | |||
"shrink_axis_mask", shrink_axis_mask | |||
}; | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"StridedSlice", name, new IntPtr[] | |||
{ | |||
@@ -534,12 +583,8 @@ namespace Tensorflow | |||
end as EagerTensor, | |||
strides as EagerTensor, | |||
}, 4, | |||
op => wrap_tfe_src.SetOpAttrs(op, | |||
"begin_mask", begin_mask, | |||
"end_mask", end_mask, | |||
"ellipsis_mask", ellipsis_mask, | |||
"new_axis_mask", new_axis_mask, | |||
"shrink_axis_mask", shrink_axis_mask), | |||
wrap_tfe_src.SetOpAttrs2(attrs), | |||
op => wrap_tfe_src.SetOpAttrs(op, attrs), | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -645,6 +690,21 @@ namespace Tensorflow | |||
/// <returns> A `Tensor`. Has the same type as `input`.</returns> | |||
public static Tensor squeeze(Tensor input, int[] axis = null, string name = null) | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = new[] { new EagerTensor() }; | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"Squeeze", name, new IntPtr[] | |||
{ | |||
input as EagerTensor | |||
}, 1, | |||
wrap_tfe_src.SetOpAttrs2("squeeze_dims", axis), | |||
op => wrap_tfe_src.SetOpAttrs(op, "squeeze_dims", axis), | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
if (axis == null) axis = new int[0]; | |||
var _op = _op_def_lib._apply_op_helper("Squeeze", name, args: new { input, squeeze_dims = axis }); | |||
@@ -674,8 +734,22 @@ namespace Tensorflow | |||
/// <param name="shape"></param> | |||
/// <param name="name"></param> | |||
/// <returns></returns> | |||
public static Tensor broadcast_to(Tensor input, int[] shape, string name = null) | |||
public static Tensor broadcast_to<T>(Tensor input, T shape, string name = null) | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(input, shape); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"BroadcastTo", name, | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
var _op = _op_def_lib._apply_op_helper("BroadcastTo", name, args: new { input, shape, name }); | |||
return _op.outputs[0]; | |||
@@ -48,7 +48,7 @@ namespace Tensorflow | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"AddN", name, | |||
inputs.Select(x => (x as EagerTensor).EagerTensorHandle).ToArray(), inputs.Length, | |||
null, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -65,7 +65,7 @@ namespace Tensorflow | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"AddN", name, | |||
inputs, inputs.Length, | |||
null, | |||
null, null, | |||
results, results.Length)); | |||
status.Check(true); | |||
return results[0]; | |||
@@ -80,7 +80,23 @@ namespace Tensorflow | |||
/// <param name="name"></param> | |||
/// <returns></returns> | |||
public static Tensor arg_max(Tensor input, int dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) | |||
=> _op_def_lib._apply_op_helper("ArgMax", name, args: new { input, dimension, output_type }).outputs[0]; | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(input, dimension); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"ArgMax", name, | |||
inputs.Points, inputs.Length, | |||
wrap_tfe_src.SetOpAttrs2("output_type", output_type), | |||
op => wrap_tfe_src.SetOpAttrs(op, "output_type", output_type), | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
return _op_def_lib._apply_op_helper("ArgMax", name, args: new { input, dimension, output_type }).output; | |||
} | |||
/// <summary> | |||
/// Returns the index with the smallest value across dimensions of a tensor. | |||
@@ -152,6 +168,7 @@ namespace Tensorflow | |||
input as EagerTensor, | |||
axis as EagerTensor | |||
}, 2, | |||
wrap_tfe_src.SetOpAttrs2("keep_dims", keep_dims), | |||
op => wrap_tfe_src.SetOpAttrs(op, "keep_dims", keep_dims), | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
@@ -198,6 +215,7 @@ namespace Tensorflow | |||
input as EagerTensor, | |||
axis as EagerTensor | |||
}, 2, | |||
wrap_tfe_src.SetOpAttrs2("keep_dims", keep_dims), | |||
op => wrap_tfe_src.SetOpAttrs(op, "keep_dims", keep_dims), | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
@@ -247,7 +265,8 @@ namespace Tensorflow | |||
{ | |||
x as EagerTensor, | |||
y as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -268,7 +287,8 @@ namespace Tensorflow | |||
{ | |||
x as EagerTensor, | |||
y as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -290,7 +310,8 @@ namespace Tensorflow | |||
{ | |||
x as EagerTensor, | |||
y as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -324,7 +345,8 @@ namespace Tensorflow | |||
"Sin", name, new IntPtr[] | |||
{ | |||
x as EagerTensor, | |||
}, 1, null, | |||
}, 1, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -358,7 +380,8 @@ namespace Tensorflow | |||
"Sigmoid", name, new IntPtr[] | |||
{ | |||
x as EagerTensor, | |||
}, 1, null, | |||
}, 1, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -451,7 +474,8 @@ namespace Tensorflow | |||
"Tan", name, new IntPtr[] | |||
{ | |||
x as EagerTensor, | |||
}, 1, null, | |||
}, 1, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -464,6 +488,20 @@ namespace Tensorflow | |||
public static Tensor tanh(Tensor x, string name = null) | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = new[] { new EagerTensor() }; | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"Tanh", name, new IntPtr[] | |||
{ | |||
x as EagerTensor, | |||
}, 1, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
var _op = _op_def_lib._apply_op_helper("Tanh", name, args: new { x }); | |||
return _op.outputs[0]; | |||
@@ -477,7 +515,25 @@ namespace Tensorflow | |||
/// <param name="name"></param> | |||
/// <returns></returns> | |||
public static Tensor tanh_grad(Tensor y, Tensor dy, string name = null) | |||
=> _op_def_lib._apply_op_helper("TanhGrad", name: name, args: new { y, dy }).output; | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = new[] { new EagerTensor() }; | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"TanhGrad", name, new IntPtr[] | |||
{ | |||
y as EagerTensor, | |||
dy as EagerTensor | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
var _op = _op_def_lib._apply_op_helper("TanhGrad", name: name, args: new { y, dy }).output; | |||
return _op.outputs[0]; | |||
} | |||
public static Tensor floor(Tensor x, string name = null) | |||
{ | |||
@@ -495,6 +551,19 @@ namespace Tensorflow | |||
public static Tensor greater<Tx, Ty>(Tx x, Ty y, string name = null) | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(x, y); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"Greater", name, | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
var _op = _op_def_lib._apply_op_helper("Greater", name: name, args: new { x, y }); | |||
return _op.outputs[0]; | |||
@@ -520,6 +589,21 @@ namespace Tensorflow | |||
public static Tensor greater_equal<Tx, Ty>(Tx x, Ty y, string name = null) | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(x, y); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"GreaterEqual", name, | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
var _op = _op_def_lib._apply_op_helper("GreaterEqual", name: name, args: new { x, y }); | |||
return _op.outputs[0]; | |||
@@ -529,14 +613,13 @@ namespace Tensorflow | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = new[] { new EagerTensor() }; | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(x, y); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"Less", name, new IntPtr[] | |||
{ | |||
x as EagerTensor, | |||
y as EagerTensor | |||
}, 2, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
"Less", name, | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
@@ -548,6 +631,19 @@ namespace Tensorflow | |||
public static Tensor less_equal<Tx, Ty>(Tx x, Ty y, string name = null) | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(x, y); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"LessEqual", name, | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
var _op = _op_def_lib._apply_op_helper("LessEqual", name: name, args: new { x, y }); | |||
return _op.outputs[0]; | |||
@@ -611,7 +707,8 @@ namespace Tensorflow | |||
"Square", name, new IntPtr[] | |||
{ | |||
x as EagerTensor, | |||
}, 1, null, | |||
}, 1, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -663,6 +760,21 @@ namespace Tensorflow | |||
/// <returns> A `Tensor`. Has the same type as `x`.</returns> | |||
public static Tensor log(Tensor x, string name = null) | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(x); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"Log", name, | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
var _op = _op_def_lib._apply_op_helper("Log", name, args: new { x }); | |||
return _op.outputs[0]; | |||
@@ -673,12 +785,20 @@ namespace Tensorflow | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = new[] { new EagerTensor() }; | |||
var attrs = new object[] | |||
{ | |||
"DstT", DstT, | |||
"Truncate", Truncate | |||
}; | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"Cast", name, | |||
new IntPtr[] { x as EagerTensor }, 1, | |||
op => wrap_tfe_src.SetOpAttrs(op, "DstT", DstT, "Truncate", Truncate), | |||
wrap_tfe_src.SetOpAttrs2(attrs), | |||
op => wrap_tfe_src.SetOpAttrs(op, attrs), | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
@@ -691,14 +811,16 @@ namespace Tensorflow | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = new[] { new EagerTensor() }; | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(x); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"Neg", name, new IntPtr[] | |||
{ | |||
x as EagerTensor | |||
}, 2, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
"Neg", name, | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
@@ -716,7 +838,8 @@ namespace Tensorflow | |||
"Sqrt", name, new IntPtr[] | |||
{ | |||
x as EagerTensor, | |||
}, 1, null, | |||
}, 1, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -737,7 +860,8 @@ namespace Tensorflow | |||
{ | |||
x as EagerTensor, | |||
y as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -758,7 +882,8 @@ namespace Tensorflow | |||
{ | |||
x as EagerTensor, | |||
y as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -786,7 +911,8 @@ namespace Tensorflow | |||
{ | |||
x as EagerTensor, | |||
y as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -815,7 +941,8 @@ namespace Tensorflow | |||
{ | |||
x as EagerTensor, | |||
y as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -836,7 +963,8 @@ namespace Tensorflow | |||
{ | |||
y as EagerTensor, | |||
x as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -856,7 +984,8 @@ namespace Tensorflow | |||
{ | |||
x as EagerTensor, | |||
y as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -877,7 +1006,8 @@ namespace Tensorflow | |||
{ | |||
x as EagerTensor, | |||
y as EagerTensor, | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -905,7 +1035,8 @@ namespace Tensorflow | |||
{ | |||
x as EagerTensor, | |||
y as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -918,6 +1049,21 @@ namespace Tensorflow | |||
public static Tensor reciprocal(Tensor x, string name = null) | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(x); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"Reciprocal", name, | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
var _op = _op_def_lib._apply_op_helper("Reciprocal", name, args: new { x }); | |||
return _op.outputs[0]; | |||
@@ -933,7 +1079,8 @@ namespace Tensorflow | |||
{ | |||
x as EagerTensor, | |||
y as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -954,7 +1101,8 @@ namespace Tensorflow | |||
{ | |||
x as EagerTensor, | |||
y as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -978,18 +1126,19 @@ namespace Tensorflow | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = new[] { new EagerTensor() }; | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(a, b); | |||
var attrs = new object[] | |||
{ | |||
"transpose_a", transpose_a, | |||
"transpose_b", transpose_b | |||
}; | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"MatMul", name, | |||
new IntPtr[] | |||
{ | |||
a as EagerTensor, | |||
b as EagerTensor | |||
}, 2, | |||
op => wrap_tfe_src.SetOpAttrs(op, | |||
"transpose_a", transpose_a, | |||
"transpose_b", transpose_b), | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
inputs.Points, inputs.Length, | |||
wrap_tfe_src.SetOpAttrs2(attrs), | |||
op => wrap_tfe_src.SetOpAttrs(op, attrs), | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
@@ -1043,6 +1192,21 @@ namespace Tensorflow | |||
/// <returns></returns> | |||
public static Tensor maximum<T1, T2>(T1 x, T2 y, string name = null) | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(x, y); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"Maximum", name, | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
var _op = _op_def_lib._apply_op_helper("Maximum", name, args: new { x, y }); | |||
return _op.outputs[0]; | |||
@@ -1050,6 +1214,21 @@ namespace Tensorflow | |||
public static Tensor minimum<T1, T2>(T1 x, T2 y, string name = null) | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(x, y); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"Minimum", name, | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
var _op = _op_def_lib._apply_op_helper("Minimum", name, args: new { x, y }); | |||
return _op.outputs[0]; | |||
@@ -1093,7 +1272,8 @@ namespace Tensorflow | |||
{ | |||
x as EagerTensor, | |||
y as EagerTensor | |||
}, 2, null, | |||
}, 2, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -1108,17 +1288,18 @@ namespace Tensorflow | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = new[] { new EagerTensor() }; | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(input, axis); | |||
var attrs = new object[] { "keep_dims", keep_dims }; | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"Sum", name, | |||
new IntPtr[] | |||
{ | |||
input as EagerTensor, | |||
axis as EagerTensor | |||
}, 2, | |||
op => wrap_tfe_src.SetOpAttrs(op, "keep_dims", keep_dims), | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
inputs.Points, inputs.Length, | |||
wrap_tfe_src.SetOpAttrs2(attrs), | |||
op => wrap_tfe_src.SetOpAttrs(op, attrs), | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
@@ -1169,7 +1350,8 @@ namespace Tensorflow | |||
start as EagerTensor, | |||
limit as EagerTensor, | |||
delta as EagerTensor | |||
}, 3, null, | |||
}, 3, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -11,14 +11,15 @@ namespace Tensorflow | |||
{ | |||
public static EagerTensor mul(IntPtr x, IntPtr y, string name = null) | |||
{ | |||
var results = new[] { new EagerTensor() }; | |||
var results = EagerTensorPass.Create(); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"Mul", name, new IntPtr[] | |||
{ | |||
x, | |||
y, | |||
}, 2, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
}, 2, | |||
null, null, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
@@ -42,17 +42,20 @@ namespace Tensorflow | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = new[] { new EagerTensor() }; | |||
var results = EagerTensorPass.Create(); | |||
var attrs = new object[] | |||
{ | |||
"seed", seed, | |||
"seed2", seed2, | |||
"dtype", dtype | |||
}; | |||
var inputs = EagerTensorPass.From(shape); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"RandomStandardNormal", name, new IntPtr[] | |||
{ | |||
shape as EagerTensor, | |||
}, 1, | |||
op => wrap_tfe_src.SetOpAttrs(op, | |||
"seed", seed, | |||
"seed2", seed2, | |||
"dtype", dtype), | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
"RandomStandardNormal", name, | |||
inputs.Points, inputs.Length, | |||
wrap_tfe_src.SetOpAttrs2(attrs), | |||
op => wrap_tfe_src.SetOpAttrs(op, attrs), | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
@@ -146,6 +149,26 @@ namespace Tensorflow | |||
if (!seed2.HasValue) | |||
seed2 = 0; | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(shape); | |||
var attrs = new object[] | |||
{ | |||
"seed", seed, | |||
"seed2", seed2, | |||
"dtype", dtype | |||
}; | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"TruncatedNormal", name, | |||
inputs.Points, inputs.Length, | |||
wrap_tfe_src.SetOpAttrs2(attrs), | |||
op => wrap_tfe_src.SetOpAttrs(op, attrs), | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
var _op = _op_def_lib._apply_op_helper("TruncatedNormal", | |||
name: name, | |||
args: new { shape, dtype, seed, seed2 }); | |||
@@ -29,15 +29,13 @@ namespace Tensorflow | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var results = new[] { new EagerTensor() }; | |||
var results = EagerTensorPass.Create(); | |||
var inputs = EagerTensorPass.From(resource, value); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"AssignSubVariableOp", name, | |||
new IntPtr[] | |||
{ | |||
resource as EagerTensor, | |||
value as EagerTensor | |||
}, 2, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
@@ -56,13 +54,11 @@ namespace Tensorflow | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var inputs = EagerTensorPass.From(resource, value); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"AssignAddVariableOp", name, | |||
new IntPtr[] | |||
{ | |||
resource as EagerTensor, | |||
value as EagerTensor | |||
}, 2, null, | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
null, 0)); | |||
status.Check(true); | |||
return null; | |||
@@ -75,13 +71,11 @@ namespace Tensorflow | |||
{ | |||
if (tf.context.executing_eagerly()) | |||
{ | |||
var inputs = EagerTensorPass.From(resource, value); | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"AssignVariableOp", name, | |||
new IntPtr[] | |||
{ | |||
resource as EagerTensor, | |||
value as EagerTensor | |||
}, 2, null, | |||
inputs.Points, inputs.Length, | |||
null, null, | |||
null, 0)); | |||
status.Check(true); | |||
return null; | |||
@@ -100,7 +94,8 @@ namespace Tensorflow | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"VarIsInitializedOp", name, | |||
new IntPtr[] { resource as EagerTensor }, | |||
1, null, | |||
1, | |||
null, null, | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
@@ -125,15 +120,19 @@ namespace Tensorflow | |||
{ | |||
if(tf.context.executing_eagerly()) | |||
{ | |||
var results = new[] { new EagerTensor() }; | |||
var results = EagerTensorPass.Create(); | |||
var attrs = new object[] | |||
{ | |||
"container", container, | |||
"shared_name", shared_name, | |||
"dtype", dtype, | |||
"shape", shape.dims | |||
}; | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"VarHandleOp", name, null, 0, | |||
op => wrap_tfe_src.SetOpAttrs(op, | |||
"container", container, | |||
"shared_name", shared_name, | |||
"dtype", dtype, | |||
"shape", shape.dims), | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
wrap_tfe_src.SetOpAttrs2(attrs), | |||
op => wrap_tfe_src.SetOpAttrs(op, attrs), | |||
results.Points, results.Length)); | |||
status.Check(true); | |||
return results[0].Resolve(); | |||
} | |||
@@ -163,6 +162,7 @@ namespace Tensorflow | |||
using Status status = new Status(c_api.TFE_FastPathExecute(tf.context, tf.context.device_name, | |||
"ReadVariableOp", name, | |||
new IntPtr[] { resource as EagerTensor }, 1, | |||
wrap_tfe_src.SetOpAttrs2("dtype", dtype), | |||
op => wrap_tfe_src.SetOpAttrs(op, "dtype", dtype), | |||
results.Select(x => x.EagerTensorHandle).ToArray(), results.Length)); | |||
status.Check(true); | |||
@@ -348,6 +348,14 @@ namespace Tensorflow | |||
/// <returns>A 1-D Tensor, the output shape as if keepdims were set to True.</returns> | |||
public static Tensor reduced_shape(Tensor input_shape, Tensor axes) | |||
{ | |||
if(tf.context.executing_eagerly()) | |||
{ | |||
var input_shape_val = input_shape.numpy(); | |||
var axes_val = (int)axes.numpy(); | |||
input_shape_val[axes_val] = 1; | |||
return tf.constant(input_shape_val); | |||
} | |||
input_shape = to_int32(input_shape); | |||
axes = to_int32(axes); | |||
@@ -522,7 +530,8 @@ namespace Tensorflow | |||
public static Tensor reduce_sum(Tensor input_tensor, int axis, bool keepdims = false, string name = null) | |||
{ | |||
var m = gen_math_ops._sum(input_tensor, axis, keep_dims: keepdims, name: name); | |||
var dims = _ReductionDims(input_tensor, axis); | |||
var m = gen_math_ops._sum(input_tensor, dims, keep_dims: keepdims, name: name); | |||
return _may_reduce_to_scalar(keepdims, axis, m); | |||
} | |||
@@ -54,8 +54,11 @@ namespace Tensorflow | |||
public static void Decrease(IntPtr handle) | |||
{ | |||
if (handle != IntPtr.Zero && container.ContainsKey(handle)) | |||
container[handle].RefCounter--; | |||
lock (locker) | |||
{ | |||
if (handle != IntPtr.Zero && container.ContainsKey(handle)) | |||
container[handle].RefCounter--; | |||
} | |||
} | |||
private static void Recycle() | |||
@@ -64,7 +67,7 @@ namespace Tensorflow | |||
lock (locker) | |||
{ | |||
var items = container.Values | |||
.Where(x => x.RefCounter <= 0 && (DateTime.Now - x.LastUpdateTime).TotalMilliseconds > 100) | |||
.Where(x => x.RefCounter <= 0 && (DateTime.Now - x.LastUpdateTime).TotalMilliseconds > 300) | |||
.ToArray(); | |||
foreach (var item in items) | |||
@@ -74,15 +77,15 @@ namespace Tensorflow | |||
switch (item.ItemType) | |||
{ | |||
case GCItemType.TensorHandle: | |||
// print($"c_api.TF_DeleteTensor({item.Handle.ToString("x16")})"); | |||
//print($"c_api.TF_DeleteTensor({item.Handle.ToString("x16")})"); | |||
c_api.TF_DeleteTensor(item.Handle); | |||
break; | |||
case GCItemType.LocalTensorHandle: | |||
// print($"c_api.TFE_DeleteTensorHandle({item.Handle.ToString("x16")})"); | |||
//print($"c_api.TFE_DeleteTensorHandle({item.Handle.ToString("x16")})"); | |||
c_api.TFE_DeleteTensorHandle(item.Handle); | |||
break; | |||
case GCItemType.EagerTensorHandle: | |||
// print($"c_api.TFE_DeleteEagerTensor({item.Handle.ToString("x16")})"); | |||
//print($"c_api.TFE_DeleteEagerTensor({item.Handle.ToString("x16")})"); | |||
c_api.TFE_DeleteEagerTensor(item.Handle); | |||
break; | |||
default: | |||
@@ -5,7 +5,7 @@ | |||
<AssemblyName>TensorFlow.NET</AssemblyName> | |||
<RootNamespace>Tensorflow</RootNamespace> | |||
<TargetTensorFlow>2.2.0</TargetTensorFlow> | |||
<Version>0.20.0-alpha2</Version> | |||
<Version>0.20.0-preview1</Version> | |||
<LangVersion>8.0</LangVersion> | |||
<Authors>Haiping Chen, Meinrad Recheis, Eli Belash</Authors> | |||
<Company>SciSharp STACK</Company> | |||
@@ -38,7 +38,8 @@ namespace Tensorflow | |||
_TensorLike, | |||
ITensorOrTensorArray, | |||
IPackable<Tensor>, | |||
ICanBeFlattened | |||
ICanBeFlattened, | |||
IPointerInputs | |||
{ | |||
protected int _id; | |||
private readonly Operation _op; | |||
@@ -280,6 +281,10 @@ namespace Tensorflow | |||
} else | |||
throw new InvalidOperationException($"Tensor.AllocationHandle is not null ({AllocationHandle}) but AllocationType is not matched to a C# allocation type ({AllocationType})."); | |||
} | |||
public virtual IntPtr ToPointer() | |||
=> _handle; | |||
public bool IsDisposed => _disposed; | |||
// public int tensor_int_val { get; set; } | |||
@@ -199,6 +199,7 @@ namespace Tensorflow | |||
=> type switch | |||
{ | |||
TF_DataType.TF_STRING => "string", | |||
TF_DataType.TF_UINT8 => "uint8", | |||
TF_DataType.TF_INT32 => "int32", | |||
TF_DataType.TF_FLOAT => "float32", | |||
TF_DataType.TF_BOOL => "bool", | |||
@@ -72,6 +72,7 @@ namespace Tensorflow | |||
alpha, | |||
delta | |||
}, 3, | |||
wrap_tfe_src.SetOpAttrs2("use_locking", use_locking), | |||
op => wrap_tfe_src.SetOpAttrs(op, "use_locking", use_locking), | |||
null, 0)); | |||
status.Check(true); | |||
@@ -0,0 +1,22 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using System.Text; | |||
using Tensorflow.Eager; | |||
namespace Tensorflow | |||
{ | |||
public class EagerTensorPass : PointerInputs<EagerTensor> | |||
{ | |||
public EagerTensorPass(params EagerTensor[] tensors) | |||
{ | |||
data = tensors; | |||
} | |||
public static EagerTensorPass Create(int count = 1) | |||
=> new EagerTensorPass(Enumerable.Range(0, count).Select(x => new EagerTensor()).ToArray()); | |||
public static EagerTensorPass From(params object[] objects) | |||
=> new EagerTensorPass(objects.Select(x => ops.convert_to_tensor(x) as EagerTensor).ToArray()); | |||
} | |||
} |
@@ -0,0 +1,11 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow | |||
{ | |||
public interface IPointerInputs | |||
{ | |||
public IntPtr ToPointer(); | |||
} | |||
} |
@@ -0,0 +1,30 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using System.Linq; | |||
namespace Tensorflow | |||
{ | |||
public abstract class PointerInputs<T> | |||
where T : IPointerInputs, new() | |||
{ | |||
protected T[] data; | |||
public int Length | |||
=> data.Length; | |||
public IntPtr[] Points | |||
=> data.Select(x => x.ToPointer()).ToArray(); | |||
public PointerInputs(params T[] data) | |||
=> this.data = data; | |||
public T this[int idx] | |||
=> data[idx]; | |||
public T[] Items | |||
=> data; | |||
public static implicit operator IntPtr[](PointerInputs<T> inputs) | |||
=> inputs.data.Select(x => x.ToPointer()).ToArray(); | |||
} | |||
} |
@@ -0,0 +1,31 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Eager; | |||
namespace Tensorflow | |||
{ | |||
public class TensorManager | |||
{ | |||
Dictionary<IntPtr, EagerTensor> tensors; | |||
public TensorManager() | |||
{ | |||
tensors = new Dictionary<IntPtr, EagerTensor>(); | |||
} | |||
public EagerTensor GetTensor(IntPtr handle) | |||
{ | |||
if (tensors.ContainsKey(handle)) | |||
return tensors[handle]; | |||
//return new EagerTensor(handle); | |||
tensors[handle] = new EagerTensor(handle); | |||
return tensors[handle]; | |||
} | |||
public void Reset() | |||
{ | |||
tensors.Clear(); | |||
} | |||
} | |||
} |
@@ -54,7 +54,7 @@ namespace Tensorflow | |||
public BaseResourceVariable(IntPtr handle, IntPtr tensor) | |||
{ | |||
_handle = handle; | |||
this.handle = new EagerTensor(tensor); | |||
this.handle = tf.tensorMgr.GetTensor(tensor); | |||
} | |||
public void __init__(bool trainable = true, | |||
@@ -22,21 +22,24 @@ namespace Tensorflow | |||
{ | |||
public partial class ResourceVariable | |||
{ | |||
public static OpDefLibrary _op_def_lib = new OpDefLibrary(); | |||
public static Tensor operator +(ResourceVariable x, int y) => op_helper("add", x, y); | |||
public static Tensor operator +(ResourceVariable x, float y) => op_helper("add", x, y); | |||
public static Tensor operator +(ResourceVariable x, double y) => op_helper("add", x, y); | |||
public static Tensor operator +(ResourceVariable x, ResourceVariable y) => op_helper("add", x, y); | |||
public static Tensor operator -(ResourceVariable x, int y) => op_helper("sub", x, y); | |||
public static Tensor operator -(ResourceVariable x, float y) => op_helper("sub", x, y); | |||
public static Tensor operator -(ResourceVariable x, double y) => op_helper("sub", x, y); | |||
public static Tensor operator -(ResourceVariable x, Tensor y) => op_helper("sub", x, y); | |||
public static Tensor operator -(ResourceVariable x, ResourceVariable y) => op_helper("sub", x, y); | |||
public static Tensor operator *(ResourceVariable x, ResourceVariable y) => op_helper("mul", x, y); | |||
public static Tensor operator *(ResourceVariable x, NDArray y) => op_helper("mul", x, y); | |||
public static Tensor operator <(ResourceVariable x, Tensor y) => gen_math_ops.less(x.value(), y); | |||
public static Tensor operator <(ResourceVariable x, Tensor y) => op_helper("less", x, y); | |||
public static Tensor operator >(ResourceVariable x, Tensor y) => gen_math_ops.greater(x.value(), y); | |||
public static Tensor operator >(ResourceVariable x, Tensor y) => op_helper("greater", x, y); | |||
private static Tensor op_helper<T>(string default_name, ResourceVariable x, T y) | |||
=> tf_with(ops.name_scope(null, default_name, new { x, y }), scope => | |||
@@ -58,6 +61,12 @@ namespace Tensorflow | |||
case "mul": | |||
result = gen_math_ops.mul(xVal, yTensor, name: name); | |||
break; | |||
case "less": | |||
result = gen_math_ops.less(xVal, yTensor, name); | |||
break; | |||
case "greater": | |||
result = gen_math_ops.greater(xVal, yTensor, name); | |||
break; | |||
default: | |||
throw new NotImplementedException(""); | |||
} | |||
@@ -15,6 +15,7 @@ | |||
******************************************************************************/ | |||
using System.Collections.Generic; | |||
using System.Diagnostics; | |||
using Tensorflow.Eager; | |||
using static Tensorflow.Binding; | |||
@@ -96,15 +97,18 @@ namespace Tensorflow | |||
get_default_graph()._name_stack = old_scope_name; | |||
} | |||
[DebuggerNonUserCode] | |||
public void __exit__() | |||
{ | |||
} | |||
[DebuggerNonUserCode] | |||
public void __init__() | |||
{ | |||
} | |||
[DebuggerNonUserCode] | |||
public void __del__() | |||
{ | |||
@@ -40,14 +40,15 @@ namespace Tensorflow | |||
public TF_DataType @string = TF_DataType.TF_STRING; | |||
public Context context = new Context(new ContextOptions(), new Status()); | |||
public TensorManager tensorMgr; | |||
public tensorflow() | |||
{ | |||
_constructThreadingObjects(); | |||
InitGradientEnvironment(); | |||
tensorMgr = new TensorManager(); | |||
} | |||
private unsafe void InitGradientEnvironment() | |||
private void InitGradientEnvironment() | |||
{ | |||
GarbageCollector.Init(); | |||
@@ -64,25 +65,30 @@ namespace Tensorflow | |||
ops.RegisterFromAssembly(); | |||
// ops.RegisterFromAssemblyEager(); | |||
c_api.TFE_RegisterGradientFunction((op_name, op_inputs, op_outputs, num_attrs, output_grads, skip_input_indices) => | |||
c_api.TFE_RegisterGradientFunction((op_name, op_inputs, op_outputs, attrs_string, output_grads, skip_input_indices) => | |||
{ | |||
/*var input_tensors = new BindingArray(op_inputs); | |||
var output_tensors = new BindingArray(op_outputs); | |||
var output_grad_tensors = new BindingArray(output_grads);*/ | |||
var input_tensors = new BindingTensorArray(op_inputs).Data.Select(x => new EagerTensor(x)).ToArray(); | |||
var output_tensors = new BindingTensorArray(op_outputs).Data.Select(x => new EagerTensor(x)).ToArray(); | |||
var output_grad_tensors = new BindingTensorArray(output_grads).Data.Select(x => new EagerTensor(x)).ToArray(); | |||
var skip_input_indices_param = new BindingArray(skip_input_indices).Data.Select(x => *(int*)x).ToArray(); | |||
var input_tensors = new BindingTensorArray(op_inputs) | |||
.Data.Select(x => tf.tensorMgr.GetTensor(x)).ToArray(); | |||
var output_tensors = new BindingTensorArray(op_outputs) | |||
.Data.Select(x => tf.tensorMgr.GetTensor(x)).ToArray(); | |||
var output_grad_tensors = new BindingTensorArray(output_grads) | |||
.Data.Select(x => tf.tensorMgr.GetTensor(x)).ToArray(); | |||
var skip_input_indices_param = new BindingArray(skip_input_indices); | |||
var gradients = ops.gradientFunctions[op_name](new EagerOperation | |||
{ | |||
Name = op_name, | |||
NumInputs = input_tensors.Length, | |||
Inputs = input_tensors, | |||
// InputHandles = input_tensors.Data, | |||
NumOutputs = output_tensors.Length, | |||
Outputs = output_tensors, | |||
// OutputHandles = output_tensors.Data, | |||
SkipInputIndices = skip_input_indices_param | |||
SkipInputIndicesArray = skip_input_indices_param, | |||
AttrsArray = attrs_string.Split(',') | |||
}, output_grad_tensors); | |||
var gradients_handles = gradients.Select(x => x == null ? IntPtr.Zero : (x as EagerTensor).EagerTensorHandle).ToArray(); | |||
@@ -56,10 +56,10 @@ namespace TensorFlowNET.UnitTest.Basics | |||
public void Accumulation() | |||
{ | |||
var x = tf.Variable(10, name: "x"); | |||
/*for (int i = 0; i < 5; i++) | |||
x = x + 1; | |||
for (int i = 0; i < 5; i++) | |||
x.assign(x + 1); | |||
Assert.AreEqual(15, (int)x.numpy());*/ | |||
Assert.AreEqual(15, (int)x.numpy()); | |||
} | |||
[TestMethod] | |||
@@ -44,10 +44,10 @@ | |||
<ItemGroup> | |||
<PackageReference Include="FluentAssertions" Version="5.10.3" /> | |||
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.6.1" /> | |||
<PackageReference Include="MSTest.TestAdapter" Version="2.1.1" /> | |||
<PackageReference Include="MSTest.TestFramework" Version="2.1.1" /> | |||
<PackageReference Include="MSTest.TestAdapter" Version="2.1.2" /> | |||
<PackageReference Include="MSTest.TestFramework" Version="2.1.2" /> | |||
<PackageReference Include="NumSharp.Lite" Version="0.1.7" /> | |||
<PackageReference Include="SciSharp.TensorFlow.Redist" Version="2.2.0.1" /> | |||
<PackageReference Include="SciSharp.TensorFlow.Redist" Version="2.2.0.2" /> | |||
</ItemGroup> | |||
<ItemGroup> | |||