diff --git a/src/TensorFlowNET.Core/NumPy/NDArray.Implicit.cs b/src/TensorFlowNET.Core/NumPy/NDArray.Implicit.cs index fd4f93fc..45b236c7 100644 --- a/src/TensorFlowNET.Core/NumPy/NDArray.Implicit.cs +++ b/src/TensorFlowNET.Core/NumPy/NDArray.Implicit.cs @@ -107,9 +107,15 @@ namespace Tensorflow.NumPy public static implicit operator NDArray(bool value) => new NDArray(value); + public static implicit operator NDArray(byte value) + => new NDArray(value); + public static implicit operator NDArray(int value) => new NDArray(value); + public static implicit operator NDArray(long value) + => new NDArray(value); + public static implicit operator NDArray(float value) => new NDArray(value); diff --git a/test/TensorFlowNET.UnitTest/Dataset/DatasetTest.cs b/test/TensorFlowNET.UnitTest/Dataset/DatasetTest.cs index 8317346e..875e5001 100644 --- a/test/TensorFlowNET.UnitTest/Dataset/DatasetTest.cs +++ b/test/TensorFlowNET.UnitTest/Dataset/DatasetTest.cs @@ -2,6 +2,7 @@ using System; using System.Linq; using static Tensorflow.Binding; +using static Tensorflow.KerasApi; namespace TensorFlowNET.UnitTest.Dataset { @@ -195,5 +196,19 @@ namespace TensorFlowNET.UnitTest.Dataset Assert.IsFalse(allEqual); } + [TestMethod] + public void GetData() + { + var vocab_size = 20000; + var dataset = keras.datasets.imdb.load_data(num_words: vocab_size); + var x_train = dataset.Train.Item1; + Assert.AreEqual(x_train.dims[0], 25000); + var y_train = dataset.Train.Item2; + Assert.AreEqual(y_train.dims[0], 25000); + var x_val = dataset.Test.Item1; + Assert.AreEqual(x_val.dims[0], 25000); + var y_val = dataset.Test.Item2; + Assert.AreEqual(y_val.dims[0], 25000); + } } }