Browse Source

Fix ones_like.

tags/yolov3
Oceania2018 4 years ago
parent
commit
e661b82ec1
14 changed files with 96 additions and 156 deletions
  1. +19
    -0
      docs/RELEASE.md
  2. +6
    -0
      src/TensorFlowNET.Core/APIs/tf.array.cs
  3. +2
    -0
      src/TensorFlowNET.Core/Binding.Util.cs
  4. +1
    -0
      src/TensorFlowNET.Core/Contexts/Context.AutoMode.cs
  5. +3
    -6
      src/TensorFlowNET.Core/Operations/array_ops.cs
  6. +37
    -26
      src/TensorFlowNET.Core/Operations/gen_math_ops.cs
  7. +7
    -21
      src/TensorFlowNET.Core/Operations/math_ops.cs
  8. +4
    -4
      src/TensorFlowNET.Core/Tensors/Tensor.String.cs
  9. +4
    -3
      src/TensorFlowNET.Core/Tensors/Tensors.cs
  10. +1
    -1
      tensorflowlib/README.md
  11. +8
    -50
      test/TensorFlowNET.Keras.UnitTest/Layers/LayersTest.cs
  12. +4
    -9
      test/TensorFlowNET.UnitTest/ManagedAPI/TensorOperate.cs
  13. +0
    -11
      test/Tensorflow.Keras.UnitTest/OptimizerTest.cs
  14. +0
    -25
      test/Tensorflow.Keras.UnitTest/Tensorflow.Keras.UnitTest.csproj

+ 19
- 0
docs/RELEASE.md View File

@@ -4,6 +4,25 @@

This release contains contributions from many people at SciSharp as well as the external contributors.

**Release Date 02/06/2021**

### TensorFlow.Binding v0.33.0

* Improve memory usage
* Fix minor bugs

### TensorFlow.Keras v0.4.0

* Add Subtract layer

* Add model.load_weights and model.save_weights

* Fix memory leak issue

* Support to build YOLOv3 object detection model


**Release Date 01/09/2021**

### TensorFlow.Binding v0.32.0


+ 6
- 0
src/TensorFlowNET.Core/APIs/tf.array.cs View File

@@ -215,6 +215,9 @@ namespace Tensorflow
public Tensor ones_like(Tensor tensor, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, bool optimize = true)
=> array_ops.ones_like(tensor, dtype: dtype, name: name, optimize: optimize);

public Tensor ones_like(NDArray nd, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, bool optimize = true)
=> array_ops.ones_like(nd, dtype: dtype, name: name, optimize: optimize);

public Tensor one_hot(Tensor indices, int depth,
Tensor on_value = null,
Tensor off_value = null,
@@ -290,6 +293,9 @@ namespace Tensorflow
public Tensor zeros_like(Tensor tensor, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, bool optimize = true)
=> array_ops.zeros_like(tensor, dtype: dtype, name: name, optimize: optimize);

public Tensor zeros_like(NDArray nd, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, bool optimize = true)
=> array_ops.zeros_like(nd, dtype: dtype, name: name, optimize: optimize);

/// <summary>
/// Stops gradient computation.
/// </summary>


+ 2
- 0
src/TensorFlowNET.Core/Binding.Util.cs View File

@@ -137,6 +137,8 @@ namespace Tensorflow
{
switch (a)
{
case Tensors arr:
return arr.Length;
case Array arr:
return arr.Length;
case IList arr:


+ 1
- 0
src/TensorFlowNET.Core/Contexts/Context.AutoMode.cs View File

@@ -28,6 +28,7 @@ namespace Tensorflow.Contexts
/// </summary>
public sealed partial class Context
{
// [DebuggerStepThrough]
public T RunInAutoMode<T>(Func<T> graphAction, Func<T> eagerAction, params object[] args)
{
if (tf.Context.has_graph_arg(args))


+ 3
- 6
src/TensorFlowNET.Core/Operations/array_ops.cs View File

@@ -388,14 +388,12 @@ namespace Tensorflow
if (dtype == TF_DataType.DtInvalid)
dtype = tensor1.dtype;
var ret = ones(ones_shape, dtype: dtype, name: name);
ret.shape = tensor1.shape;
return ret;
});
}

public static Tensor ones(Tensor shape, TF_DataType dtype = TF_DataType.TF_FLOAT, string name = null)
{
dtype = dtype.as_base_dtype();
return tf_with(ops.name_scope(name, "ones", new { shape }), scope =>
{
name = scope;
@@ -578,11 +576,10 @@ namespace Tensorflow

if (!tf.Context.executing_eagerly())
{
var input_tensor = ops.convert_to_tensor(input);
var input_shape = input_tensor.TensorShape;
if (optimize && input_tensor.NDims > -1 && input_shape.is_fully_defined())
var input_shape = input.TensorShape;
if (optimize && input.NDims > -1 && input_shape.is_fully_defined())
{
var nd = np.array(input_tensor.shape).astype(out_type.as_numpy_dtype());
var nd = np.array(input.shape).astype(out_type.as_numpy_dtype());
return constant_op.constant(nd, name: name);
}
}


+ 37
- 26
src/TensorFlowNET.Core/Operations/gen_math_ops.cs View File

@@ -124,6 +124,9 @@ namespace Tensorflow
x, y).FirstOrDefault(),
x, y);

public static Tensor mean(Tensor input, int axis, bool keep_dims = false, string name = null)
=> mean(input, ops.convert_to_tensor(axis), keep_dims: keep_dims, name: name);

/// <summary>
/// Computes the mean of elements across dimensions of a tensor.
/// Reduces `input` along the dimensions given in `axis`. Unless
@@ -137,23 +140,30 @@ namespace Tensorflow
/// <param name="keep_dims"> An optional `bool`. Defaults to `False`. If true, retain reduced dimensions with length 1.</param>
/// <param name="name"> A name for the operation (optional).</param>
/// <returns> A `Tensor`. Has the same type as `input`.</returns>
public static Tensor mean<T1, T2>(T1 input, T2 axis, bool keep_dims = false, string name = null)
{
if (tf.Context.executing_eagerly())
{
var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName,
public static Tensor mean(Tensor input, Tensor axis, bool keep_dims = false, string name = null)
=> tf.Context.RunInAutoMode2(
() => tf.OpDefLib._apply_op_helper("Mean", name, new
{
input,
reduction_indices = axis,
keep_dims = keep_dims
}).output,
() => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName,
"Mean", name,
null,
input, axis,
"keep_dims", keep_dims);

return results[0];
}

var _op = tf.OpDefLib._apply_op_helper("Mean", name, args: new { input, reduction_indices = axis, keep_dims = keep_dims });

return _op.output;
}
"keep_dims", keep_dims).FirstOrDefault(),
(op) =>
{
var attrs = new object[]
{
"T", op.get_attr<TF_DataType>("T"),
"Tidx", op.get_attr<TF_DataType>("Tidx"),
"keep_dims", op.get_attr<bool>("keep_dims")
};
tf.Runner.RecordGradient("Mean", op.inputs, attrs, op.outputs);
},
new Tensors(input, axis));

public static Tensor mean(Tensor[] inputs, Tensor axis, bool keep_dims = false, string name = null)
{
@@ -786,20 +796,21 @@ namespace Tensorflow
}

public static Tensor sub(Tensor x, Tensor y, string name = null)
{
if (tf.Context.executing_eagerly())
{
var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName,
=> tf.Context.RunInAutoMode2(
() => tf.OpDefLib._apply_op_helper("Sub", name, new { x, y }).output,
() => tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName,
"Sub", name,
null,
x, y);
return results[0];
}

var _op = tf.OpDefLib._apply_op_helper("Sub", name, args: new { x, y });

return _op.output;
}
x, y).FirstOrDefault(),
(op) =>
{
var attrs = new object[]
{
"T", op.get_attr<TF_DataType>("T")
};
tf.Runner.RecordGradient("Sub", op.inputs, attrs, op.outputs);
},
new Tensors(x, y));

public static Tensor sub<Tx, Ty>(Tx x, Ty y, string name = null)
{


+ 7
- 21
src/TensorFlowNET.Core/Operations/math_ops.cs View File

@@ -327,31 +327,17 @@ namespace Tensorflow
public static Tensor reduce_mean(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null, int? reduction_indices = null)
{
var r = _ReductionDims(input_tensor, axis);
if (axis == null)
{
var m = gen_math_ops.mean(input_tensor, r, keepdims, name);
return _may_reduce_to_scalar(keepdims, axis, m);
}
else
{
var m = gen_math_ops.mean(input_tensor, axis, keepdims, name);
return _may_reduce_to_scalar(keepdims, axis, m);
}
var axis_tensor = axis == null ? r : ops.convert_to_tensor(axis);
var m = gen_math_ops.mean(input_tensor, axis_tensor, keepdims, name);
return _may_reduce_to_scalar(keepdims, axis_tensor, m);
}

public static Tensor reduce_mean(Tensor[] input_tensors, int? axis = null, bool keepdims = false, string name = null)
{
if (axis == null)
{
var r = _ReductionDims(input_tensors, axis);
var m = gen_math_ops.mean(input_tensors, r, keepdims, name);
return _may_reduce_to_scalar(keepdims, axis, m);
}
else
{
var m = gen_math_ops.mean(input_tensors, axis, keepdims, name);
return _may_reduce_to_scalar(keepdims, axis, m);
}
var r = _ReductionDims(input_tensors, axis);
var axis_tensor = axis == null ? r : ops.convert_to_tensor(axis.Value);
var m = gen_math_ops.mean(input_tensors, axis_tensor, keepdims, name);
return _may_reduce_to_scalar(keepdims, axis, m);
}

/// <summary>


+ 4
- 4
src/TensorFlowNET.Core/Tensors/Tensor.String.cs View File

@@ -90,17 +90,17 @@ namespace Tensorflow
size *= s;

var buffer = new byte[size][];
var src = c_api.TF_TensorData(_handle);
src += (int)(size * 8);
var data_start = c_api.TF_TensorData(_handle);
data_start += (int)(size * sizeof(ulong));
for (int i = 0; i < buffer.Length; i++)
{
IntPtr dst = IntPtr.Zero;
ulong dstLen = 0;
var read = c_api.TF_StringDecode((byte*)src, bytesize, (byte**)&dst, ref dstLen, tf.Status.Handle);
var read = c_api.TF_StringDecode((byte*)data_start, bytesize, (byte**)&dst, ref dstLen, tf.Status.Handle);
tf.Status.Check(true);
buffer[i] = new byte[(int)dstLen];
Marshal.Copy(dst, buffer[i], 0, buffer[i].Length);
src += (int)read;
data_start += (int)read;
}

return buffer;


+ 4
- 3
src/TensorFlowNET.Core/Tensors/Tensors.cs View File

@@ -69,13 +69,14 @@ namespace Tensorflow
=> items.Insert(index, tensor);

IEnumerator IEnumerable.GetEnumerator()
{
throw new NotImplementedException();
}
=> GetEnumerator();

public static implicit operator Tensors(Tensor tensor)
=> new Tensors(tensor);

public static implicit operator Tensors((Tensor, Tensor) tuple)
=> new Tensors(tuple.Item1, tuple.Item2);

public static implicit operator Tensors(NDArray nd)
=> new Tensors(nd);



+ 1
- 1
tensorflowlib/README.md View File

@@ -56,7 +56,7 @@ Set ENV `BAZEL_VC=C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\

1. Build static library

`bazel build --config=opt //tensorflow:tensorflow`
`bazel build --output_base=C:/tmp/tfcompilation build --config=opt //tensorflow:tensorflow`

2. Build pip package



+ 8
- 50
test/TensorFlowNET.Keras.UnitTest/Layers/LayersTest.cs View File

@@ -1,6 +1,7 @@
using Microsoft.VisualStudio.TestTools.UnitTesting;
using NumSharp;
using Tensorflow;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;

namespace TensorFlowNET.Keras.UnitTest
@@ -39,8 +40,8 @@ namespace TensorFlowNET.Keras.UnitTest
/// <summary>
/// Custom layer test, used in Dueling DQN
/// </summary>
[TestMethod, Ignore]
public void FunctionalTest()
[TestMethod]
public void TensorFlowOpLayer()
{
var layers = keras.layers;
var inputs = layers.Input(shape: 24);
@@ -48,58 +49,15 @@ namespace TensorFlowNET.Keras.UnitTest
var value = layers.Dense(24).Apply(x);
var adv = layers.Dense(1).Apply(x);
var adv_out = adv - Binding.tf.reduce_mean(adv, axis: 1, keepdims: true); // Here's problem.
var outputs = layers.Add().Apply(new Tensors(adv_out, value));
var mean = adv - tf.reduce_mean(adv, axis: 1, keepdims: true);
adv = layers.Subtract().Apply((adv, mean));
var outputs = layers.Add().Apply((value, adv));
var model = keras.Model(inputs, outputs);
model.summary();
model.compile(optimizer: keras.optimizers.RMSprop(0.001f),
loss: keras.losses.MeanSquaredError(),
metrics: new[] { "acc" });
// Here we consider the adv_out is one layer, which is a little different from py's version
Assert.AreEqual(model.Layers.Count, 6);

// py code:
//from tensorflow.keras.layers import Input, Dense, Add, Subtract, Lambda
//from tensorflow.keras.models import Model
//from tensorflow.keras.optimizers import RMSprop
//import tensorflow.keras.backend as K

//inputs = Input(24)
//x = Dense(128, activation = "relu")(inputs)
//value = Dense(24)(x)
//adv = Dense(1)(x)
//meam = Lambda(lambda x: K.mean(x, axis = 1, keepdims = True))(adv)
//adv = Subtract()([adv, meam])
//outputs = Add()([value, adv])
//model = Model(inputs, outputs)
//model.compile(loss = "mse", optimizer = RMSprop(1e-3))
//model.summary()

//py output:
//Model: "functional_3"
//__________________________________________________________________________________________________
//Layer(type) Output Shape Param # Connected to
//==================================================================================================
//input_2 (InputLayer) [(None, 24)] 0
//__________________________________________________________________________________________________
//dense_3 (Dense) (None, 128) 3200 input_2[0][0]
//__________________________________________________________________________________________________
//dense_5 (Dense) (None, 1) 129 dense_3[0][0]
//__________________________________________________________________________________________________
//lambda_1 (Lambda) (None, 1) 0 dense_5[0][0]
//__________________________________________________________________________________________________
//dense_4 (Dense) (None, 24) 3096 dense_3[0][0]
//__________________________________________________________________________________________________
//subtract_1 (Subtract) (None, 1) 0 dense_5[0][0]
// lambda_1[0][0]
//__________________________________________________________________________________________________
//add_1 (Add) (None, 24) 0 dense_4[0][0]
// subtract_1[0][0]
//==================================================================================================
//Total params: 6,425
//Trainable params: 6,425
//Non-trainable params: 0
//__________________________________________________________________________________________________
model.summary();
Assert.AreEqual(model.Layers.Count, 8);
}

/// <summary>


+ 4
- 9
test/TensorFlowNET.UnitTest/ManagedAPI/TensorOperate.cs View File

@@ -132,28 +132,25 @@ namespace TensorFlowNET.UnitTest.ManagedAPI
}

#region ones/zeros like
[Ignore]
[TestMethod]
public void TestOnesLike()
{
#region 2-dimension
var testCase2D = tf.constant(new int[,]
var ones2D = tf.ones_like(new int[,]
{
{ 1, 2, 3 },
{ 4, 5, 6 }
});
var ones2D = tf.ones_like(testCase2D);

Assert.AreEqual(new[] { 1, 1, 1 }, ones2D[0].numpy());
Assert.AreEqual(new[] { 1, 1, 1 }, ones2D[1].numpy());
#endregion

#region 1-dimension
var testCase1D = tf.constant(new int[,]
var ones1D = tf.ones_like(new int[,]
{
{ 1, 2, 3 }
});
var ones1D = tf.ones_like(testCase1D);

Assert.AreEqual(new[] { 1, 1, 1 }, ones1D[0].numpy());
#endregion
@@ -163,23 +160,21 @@ namespace TensorFlowNET.UnitTest.ManagedAPI
public void TestZerosLike()
{
#region 2-dimension
var testCase2D = tf.constant(new int[,]
var zeros2D = tf.zeros_like(new int[,]
{
{ 1, 2, 3 },
{ 4, 5, 6 }
});
var zeros2D = tf.zeros_like(testCase2D);

Assert.AreEqual(new[] { 0, 0, 0 }, zeros2D[0].numpy());
Assert.AreEqual(new[] { 0, 0, 0 }, zeros2D[1].numpy());
#endregion

#region 1-dimension
var testCase1D = tf.constant(new int[,]
var zeros1D = tf.zeros_like(new int[,]
{
{ 1, 2, 3 }
});
var zeros1D = tf.zeros_like(testCase1D);

Assert.AreEqual(new[] { 0, 0, 0 }, zeros1D[0].numpy());
#endregion


+ 0
- 11
test/Tensorflow.Keras.UnitTest/OptimizerTest.cs View File

@@ -1,11 +0,0 @@
using Microsoft.VisualStudio.TestTools.UnitTesting;
using System.Collections.Generic;

namespace Tensorflow.Keras.UnitTest
{
[TestClass]
public class OptimizerTest
{

}
}

+ 0
- 25
test/Tensorflow.Keras.UnitTest/Tensorflow.Keras.UnitTest.csproj View File

@@ -1,25 +0,0 @@
<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<TargetFramework>netcoreapp3.1</TargetFramework>

<IsPackable>false</IsPackable>

<Platforms>AnyCPU;x64</Platforms>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.6.1" />
<PackageReference Include="MSTest.TestAdapter" Version="2.1.1" />
<PackageReference Include="MSTest.TestFramework" Version="2.1.1" />
<PackageReference Include="coverlet.collector" Version="1.2.1">
<PrivateAssets>all</PrivateAssets>
<IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
</PackageReference>
</ItemGroup>

<ItemGroup>
<ProjectReference Include="..\..\src\TensorFlowNET.Keras\Tensorflow.Keras.csproj" />
</ItemGroup>

</Project>

Loading…
Cancel
Save